

岛津三重四极杆串级质谱 TQ 系列 现场培训操作指南

岛津企业管理(中国)有限公司

目 录

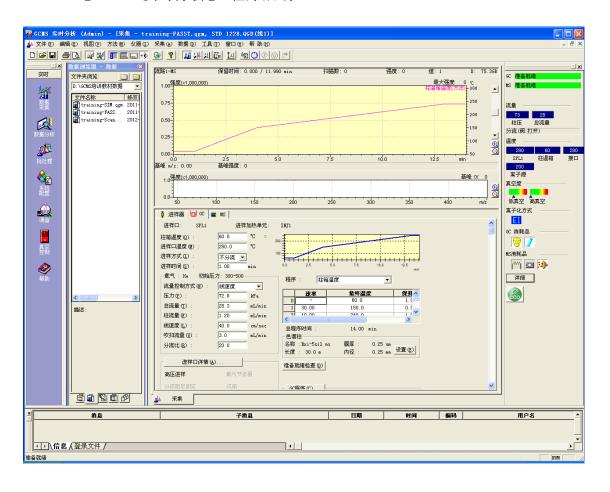
1	启动 GC-MS/MS
	1.1 打开电源
	1.2 系统配置
	1.3 系统启动
	1.4 系统关闭
2	创建 Q3SCAN 方法文件
	2.1 新建方法文件
	2.2 设置自动进样器参数
	2.3 设置 GC 参数 ·························1
	2.4 设置 MS 参数
	2.5 保存方法文件并下传参数
3	检漏调谐
	3.1 系统检漏
	3.2 自动调谐 10
	3.3 查看调谐结果 19
4	数据采集(单次进样)
	4.1 样品登录 20
	4.2 进样

5 定性分析

5.1 谱图操作	•23
5.2 谱库检索	24
6 定量分析	
6.1 采集正构烷烃数据	•28
6.2 创建 MRM 方法 ···································	30
6.3 修正校准曲线级别及浓度	32
6.4 设定离子比率	•34
6.5 制作校准曲线	
6.5.1 采集标样数据	•37
6.5.1.1 打开方法文件	·37
6.5.1.2 创建批处理表	·37
6.5.1.3 运行批处理表	•40
6.5.2 检查和修正校准曲线	•42
6.5.3 修正校准曲线后重新定量未知样品	•49
6.6 制作定量报告	.51

1. 启动 GC-MS/MS

打开 GC-MS/MS 单元和计算机的电源,启动 GCMS solution。


1.1 打开电源

- 1 打开 GC 电源。
- 2 打开 MS 电源。
- 3 打开计算机、打印机和显示器的电源。

4 双击 (GCMS 实时分析) 图标。

【GCMS 实时分析】 程序启动。

1.2 系统配置

依据以下步骤, 检查并设置用于分析的组件。

1.2.1 设置用于分析的组件

1 单击【实时分析】助手栏中的【系统配置】图标,【系统配置】 窗口打开。

2 检查设置过的【用于分析的组件】。

如果用于分析的组件没有设置,则须:

- 1) 在【可用的组件】中选择要使用的组件。
- 2) 单击 , 在【己用于分析的组件】中注册该组件。

3) 双击【MS】图标,进入【MS】组件中勾选 CID 气。

1.2.2 启用用于分析的组件

单击【设置】,系统配置信息被传输到仪器中。

1.3 系统启动

1 单击【实时分析】助手栏中的【真空控制】图标。【真空控制】窗口打开。

2 单击【自动启动】。真空系统启动。

3 显示"已完成"时,单击【关闭】。

注:建议不选择【真空重启方式】,否则仪器突然断电而又马上来电时容易损坏 涡轮分子泵。

1.4 系统关闭

1.4.1 系统关机

1 单击【实时分析】助手栏中的【真空控制】图标。【真空控制】窗口打开。

2 单击【自动关机】。仪器开始降温,温度降至120℃后真空系统关闭。

1.4.2 节能模式

节能模式是指在待机分析期间,将仪器各部分温度降低,载气流量减小,但 真空系统处于运行状态,以便之后需要分析样品时只需将温度和流量等恢复后可 以快速分析。

1 单击仪器监视器中的【节能模式】图标。

2 在弹出窗口中点击【是】,将仪器切换到节能模式。

3 在节能模式中,系统会弹出【节能模式】窗口。 单击窗口中的【解除】即可退出节能模式。退出节能模式时,系统将被还 原成进入节能模式前的状态。

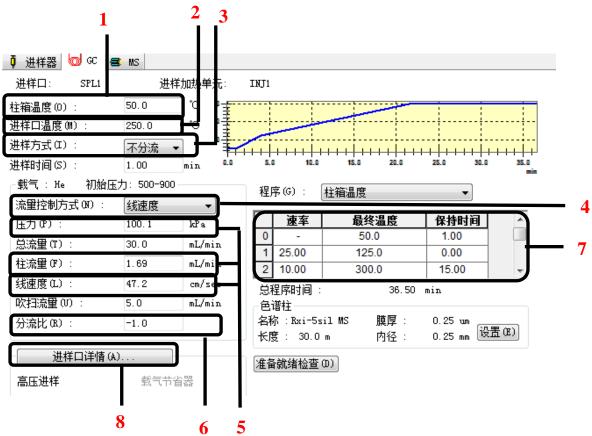
2 创建 Q3SCAN 方法文件

2.1 新建方法文件

1 单击【实时分析】助手栏中的【数据采集】图标。【采集】窗口打开。

2 单击【文件】菜单中的【新建方法文件】

2.2 设置自动进样器参数


单击【进样器】标签,设置分析条件。

- 1)输入适于样品状态的清洗次数。
- 2)【柱塞进样速度】设置为【高速】。

2.3 设置 GC 参数

单击【GC】标签,设置分析条件。

- 1) 输入柱温箱的初始温度。
- 2) 依据目标组分的沸点,输入进样口温度。
- 3) 选择【分流】或【不分流】。

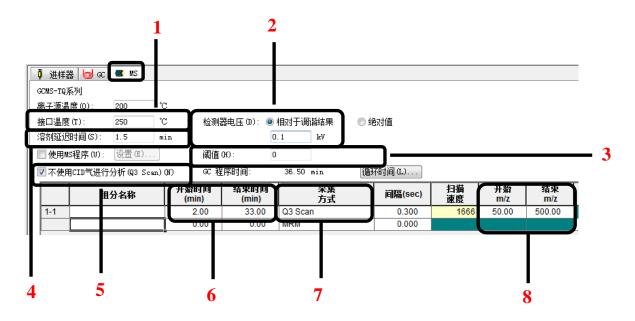
参考

设置进样方式

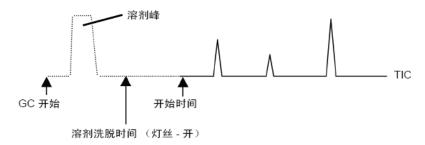
分流:如果注入的样品浓度高,选择这个方式(注入的样品量: 10 到 100ng 或更多)。

不分流:如果注入的样品浓度低,选择这个方式(注入的样品量:小于 10 ng)。

- 4)选择【压力】或【线速度】。压力表示恒压方式,线速度表示恒线速度 方式。
- 5) 参照下面的"载气的典型压力设置",输入压力。或设置线速度。 载气的典型压力设置


	E细管柱 25 mm)	大口径毛细管柱 (I.D. 0.32 mm)			
30 m	60 m	30 m	60 m		
75 到 150 kPa	100 到 250 kPa	30 到 50 kPa	50 到 100 kPa		

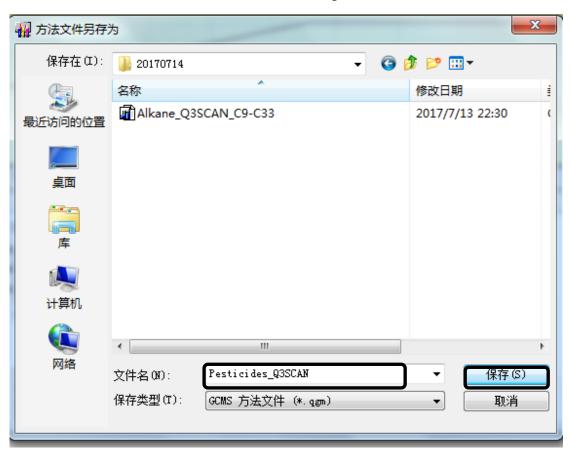
- 6)如果选择"分流"作为进样模式,输入分流比。如果选择"不分流",可以输入一个小的分流比,也可以输入"-1"(总流量保持不变,分流流量自动分配,为载气总流量减去隔垫吹扫流量和柱流量)。
- 7) 设置柱温程序。
- 8) 单击【进样口详情】,设置高压进样参数。



2.4 设置 MS 参数

单击【MS】标签,设置分析条件。

- 1)输入【接口温度】。
- 2) 单击【相对于调谐结果】。如果峰强度小,输入 0.1~0.3。 也可以单击【绝对值】。输入一个绝对电压值。
- 3) 阈值,输入"0"。
- 4) 溶剂延迟时间, 即为灯丝开启时间, 一般取为溶剂完全出峰后的时间。
- 5) 勾选后,仅在使用 Q3 Scan 或 Q3 SIM 测定模式中不使用 CID 气。
- 6)输入测定目标组分的【开始时间】和【结束时间】。
 开始时间应比溶剂延迟时间大 0.5 分钟。开始时间与溶剂延迟时间的关系


- 7) 选择【Q3Scan】。
- 8) 输入采集离子的质量范围。

2.5 保存方法文件并下传参数

1 单击【方法文件另存为】。

2 在【文件名】中输入方法名称(Pesticides_Q3SCAN),单击【保存】。

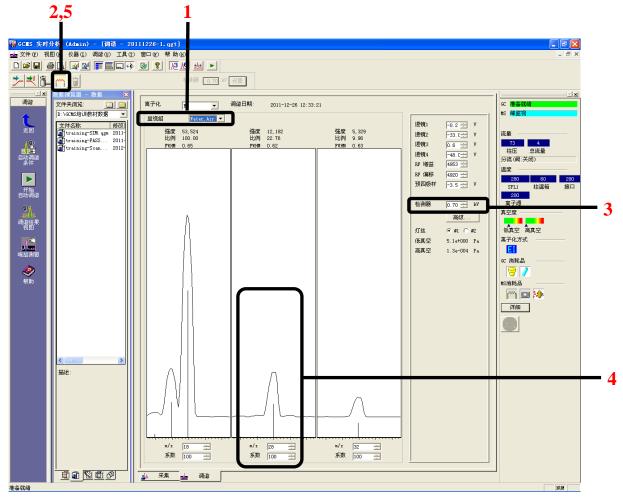
3 单击【采集】中的【下载初始参数】,将设置的方法参数传输到仪器中。

3 检漏调谐

3.1 系统检漏

- 1 启动真空系统后,等待 2~3 小时。
- 2 如果柱温、进样口等温度还未升温,则打开方法文件,单击【采集】中的【下载初始参数】,方法参数传输至仪器并开始升温,等待至【GC:准备就绪】和【MS:准备就绪】。

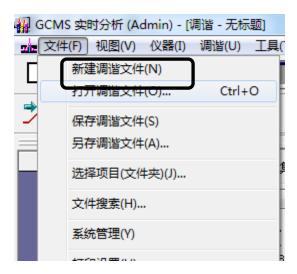
3 单击【实时分析】助手栏中的【调谐】图标。



4单击【调谐】助手栏中的【峰监测窗】图标。

【峰监测】窗口打开。

5 检查泄漏。


- 1) 在【监视组】列表中,单击【水,空气】
- 2) 单击 (灯丝开/关), 打开灯丝。
- 3) 改变检测器电压, 使 m/z 18 (水)的峰高到显示窗口的 1/2 处。
- 4) 比较 m/z 18 (水)的峰高与 m/z 28 (氮气)的峰高。检查 m/z 28 (氮气)的峰高是否为 m/z 18 (水)的峰高的两倍以下。
- 5) 单击 (灯丝开/关), 关闭灯丝。

参考

如果 m/z 28 (氮气)的峰高是 m/z 18 (水)的峰高的两倍以上,就有可能发生空气泄漏。需查找气体泄漏的位置。

3.2 自动调谐

- 1 单击【实时分析】助手栏中的【调谐】图标。
- 2 点击【新建调谐文件】

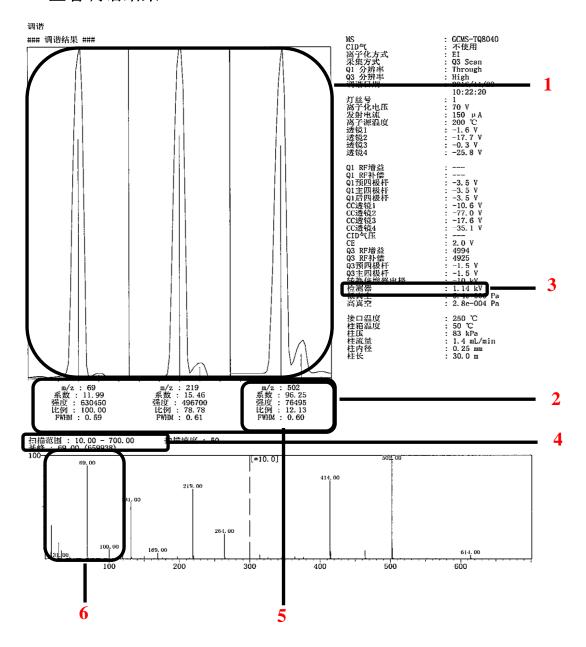
3 保存调谐文件名称,选择调谐模式为【高灵敏度】,单击【确定】。

注: 创建新调谐文件时,选择调谐模式主要根据测定目标组分的浓度水平。仪器默认为 "标准"模式。对于样品中微量含量的分析如农药残留分析选择"高灵敏度"模式。

4单击【调谐】助手栏中的【自动调谐条件】图标。

5 【调谐信息】窗口打开,将相关条件如下所示设置后,单击【确定】。

4 选择要使用的灯丝。

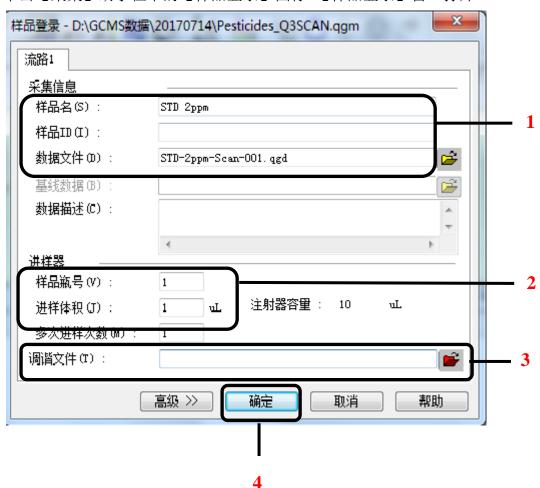

5 单击【调谐】助手栏中的【开始自动调谐】图标。

6 调谐完成后,单击【另存调谐文件】,输入调谐文件名,单击【保存】。

3.3 查看调谐结果

- 1) 检查峰形是否有明显的分叉,峰形是否对称。
- 2) 检查 FWHM(半高峰宽)值是否在 0.6±0.1 范围内。
- 3) 检查检测器电压是否超过 1.5 kV。
- 4) 检查基峰值是否是 18 或 69。
- 5) 检查 m/z 502 的相对强度比率是否大于为 2%。
- 6) 检查 m/z 69 的峰强度是否至少是 m/z 28 峰强度的两倍。

4 数据采集(单次进样)


使用自动进样器或手动进样逐个登录和分析样品时,使用单次进样。

以农残演示实验为例,四组农药标样(甲拌磷、alpha-六六六、beta-六六六、毒死蜱)浓度为 10 ppb、50 ppb、100 ppb 和 2.0 ppm,通常先注入较高浓度即 2.0 ppm 的标样以检查方法参数是否合适,并以此数据为基础进行后续的定性和定量分析。

- 1 单击【实时分析】助手栏中的【数据采集】图标。
- **2** 单击【菜单栏】中的【打开方法文件】,打开 Pesticides_Q3SCAN.qgm 方法文件并下传参数。

4.1 样品登录

单击【采集】助手栏中的【样品登录】图标。【样品登录】窗口打开。

- 1)输入【样品名】和【数据文件】。
- 2) 使用自动进样器时,输入放置样品的【样品瓶号】和【进样体积】。
- 3) 未指定调谐文件(调谐文件留空白)时,表示使用当前打开的调谐文件。
- 4) 单击【确定】。

4.2 进样

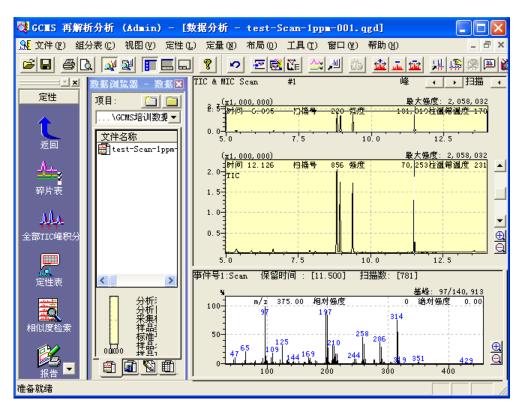
1 单击【采集】助手栏中的【待机】图标。

在 GC 和 MS 准备就绪(Ready)时,【开始】图标变绿。

2 使用自动进样器时,放置样品,然后单击【开始】图标。 如果没有自动进样器,则手动进样后按 GC 主机上的【START】按钮。

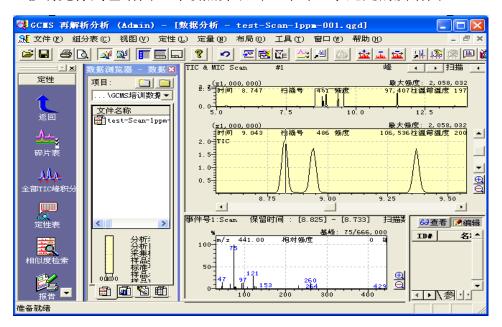
参考

要在停止时间前强制停止数据采集,单击【采集】助手栏中的 (停止)图标,但GC程序仍然执行,要停止GC程序,按GC主机上的【STOP】按钮。

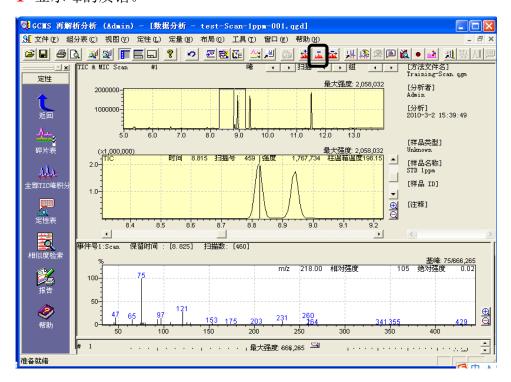

5 定性分析

用 Q3 SCAN 方式测定的数据进行质谱操作和谱库检索等数据处理。

- 1单击桌面上【GCMS 再解析】,进入GCMS 再解析窗口。
- 2 分析登录的界面,单击【确定】进入后处理窗口。
- 3 单击助手栏中的【定性】。

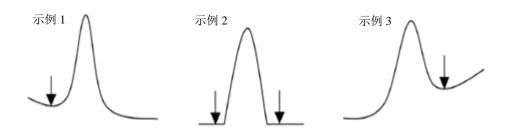

4 打开要处理的数据文件 STD-2ppm-Scan-001.qgd。

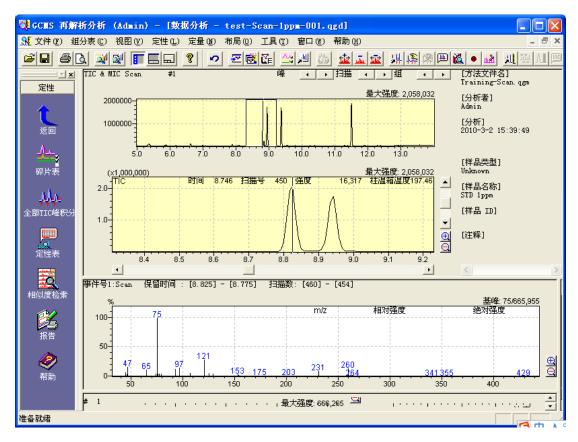
5.1 谱图操作


5.1.1 质谱图的显示

移动光标到色谱图上峰顶点并双击,即可显示此处的质谱图。

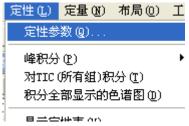
5.1.2 背景扣除


1 显示峰的质谱。


- 2 单击工具栏中 "差减质谱"图标,或右键单击扩展图,在右键菜单中选择【差减质谱】。
- 3 双击色谱图上的背景位置扣除质谱背景。

参考背景处理位置

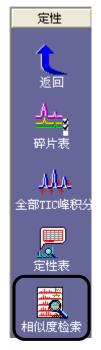
注: 以下类型的峰,以箭头所指的位置作为背景可以得到清晰质谱图。


4 显示已扣除背景质谱。

5.2 谱库检索

Ⅰ显示要检索的质谱图(背景已扣除)。

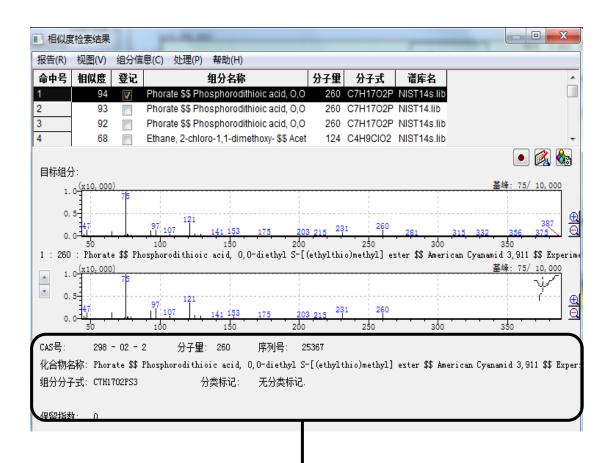
2 单击【定性】菜单中【定性参数】, 单击【相似度检索】标签设置检索参数




3 单击 按钮,选择谱库文件如 NIST14,【检索深度】选择"1",单击【确定】。

定性参数	X
峰积分 质谱处理 相似度检索 保留指数 色	- 音 音
 	责小SI (S):
C:\GCMSsolution\library\NIST14.lib	0 检索深度(0): 1 ▼
C:\GCMSsolution\library\NIST14s.lil	O 最大命中数(M): 25 🚔
	O □ 不包括重复命中(B)
	□ 反检索 (B) □ 保留指数允许误差 (I)

4 单击助手栏中【相似度检索】。



5 显示检索结果。

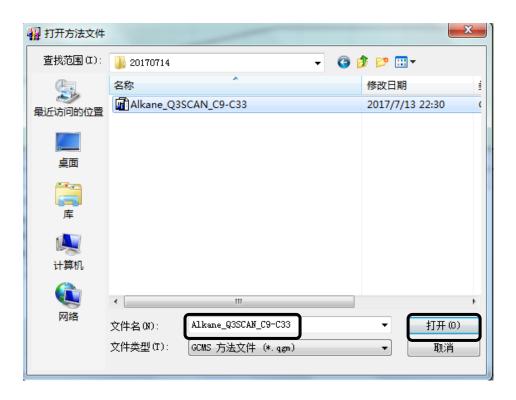
6 单击【视图】菜单栏中【信息查看模式】,显示组分信息

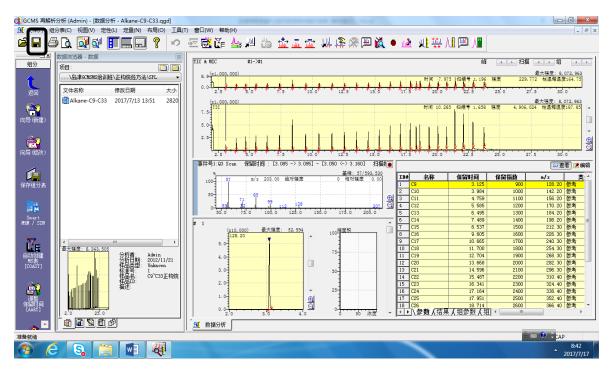
组分信息

6 定量分析

利用 C9~C33 正构烷烃数据和 Smart MRM 农药数据库创建 MRM 方法,通过该 MRM 方法采集 3 个浓度的标样(10 ppb、50 ppb、100 ppb),并以这些数据建立校准曲线,进行定量分析。

6.1 采集正构烷烃数据


』 单击【GCMS 实时分析】助手栏中的【数据采集】图标。进入数据采集窗口。


2 单击【文件】菜单中的【打开方法文件】,打开【Alkane_Q3SCAN_C9-C33】。

3 打开【Alkane_Q3SCAN_C9-C33】。

- 4 使用单次进样,采集 C9~C33 正构烷烃。
- 5 单击桌面上【GCMS 再解析】, 进入 GCMS 再解析窗口。
- **6** 识别正构烷烃 C9~C33 各组分。识别完成后,点击 Ⅰ , 保存该数据。

注: 如果正构烷烃为 C7~C40,则方法文件请选择 Alkane_Q3SCAN_C7-C40。

6.2 创建 MRM 方法

1 打开 "SmartDatabase Pesticides" 农药数据库。

2 AART 用保留指数选择"保留指数 1"。n-alkane 数据文件选择"Alkane_ C9~ C33"。模版方法文件选择"Pesticides_Q3SCAN"。

3 选择需要测定的目标组分。将测定目标组分的类型选择为【Target】,将不需测定的组分类型中【Target】删除。或者使用组管理的方式,将需要测定的目标组分打上 x。

	系列号	类型	测定模式	ISTD Group	Level1浓度 (IS)	方法号	组分名称 (C)
	▼	_	-	~	~	▼	<u></u>
7	64		MRM			1	二氯烯丹-1
3	65	Target	MRM			1	甲拌磷
3	66	Target	MRM			1	alpha-六六六
)	67		MRM			1	六氯苯
	68		MRM			1	二氯烯丹-2
?	69		MRM			1	甲基乙拌磷
3	70		MRM			1	五氯甲氧基苯
H	71		MRM			1	复硝胺

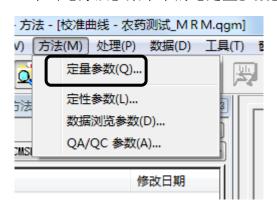
组管理方式选择目标组分:

1组命名,并以"x"标记目标组分

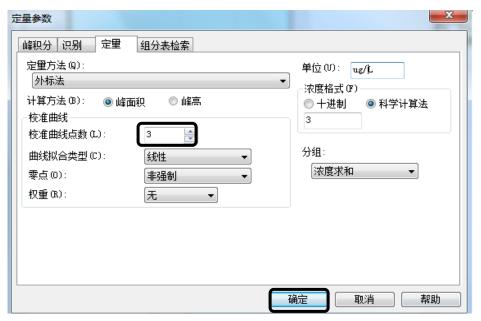
						V	
力考核	农业部风险评	估农业部例行出	点测 I	8 &	QC	培训演示	
1 🔻	29种	▼ 41 种	-		-	_	
		Х					
							L
							L
	Х	Х				Х	ļ
			\perp				L
							L

3 单击筛选按钮,完成目标组分选择。

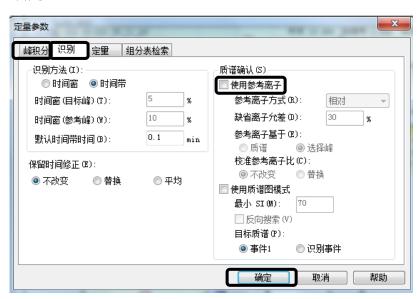
4 点击"创建方法文件",设定 MS 表参数。


5 点击 OK,保存方法为"农药测试_MRM"。【GCMS实时分析】中打开 "农药测试_MRM"方法,在 MS参数中选择合适的检测器电压(通常设 定为调谐电压+0.6kV 左右),保存方法文件。

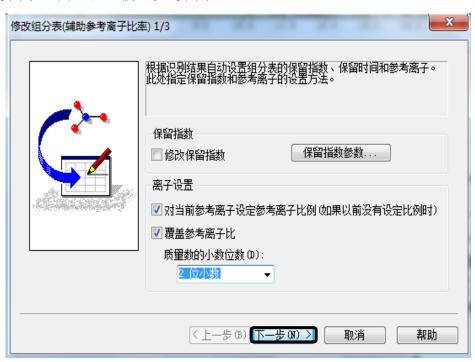
6.3 修正校准曲线级别及浓度

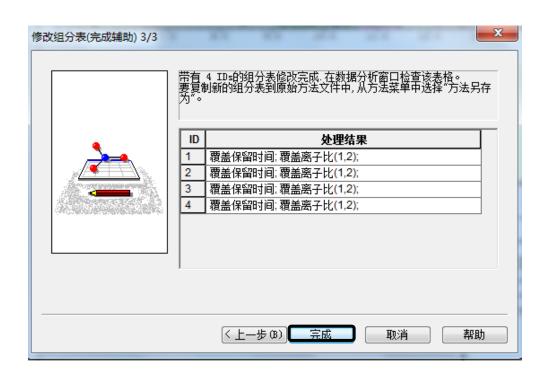

- 1 单击桌面上【GCMS 再解析】,进入 GCMS 再解析窗口。
- 2 单击助手栏中的【校准曲线】图标。

- 3 打开方法文件【农药测试_MRM.qgm】。
- 4 单击【方法】菜单中的【定量参数】。


5 修改【定量参数】中【校准曲线点数】,点击【确定】。

6.4 设定离子比率


- ☑利用"农药测试_MRM.qgm",采集标准曲线中某一较高浓度的标准样品,如 MRM.qgd。
- 2 打开【GCMS 再解析】,打开数据文件"MRM.qgd"。
- **3** 点击助手栏中【定量】图标中的【定量参数】。在【峰积分】设置合适的的积分参数,使待测化合物的色谱峰被检测。把【识别】标签中清除【使用参考离子】,【确定】。


- 4 单击助手栏中【峰积分】图标,进行定量积分。
- 5 点击助手栏中【创建组分表】中的【向导(修改)】图

6 在显示【修改组分表(辅助参考离子比率)1/3】中勾选【对当前参考离子设定 参考离子比例】和【覆盖参考离子】。

7点击【下一步】至【完成】。化合物的离子比率被设定。

8 在【定量参数】窗口的【识别】标签中,勾选【使用参考离子】。

9【文件】菜单中的【方法另存为】,覆盖保存方法文件。至此,MRM 方法文件建立完毕。

6.5 校准曲线制作

6.5.1 采集标样数据

6.5.1.1 打开方法文件

- 1 单击【GCMS实时分析】图标。
- 2 选择前面创建的方法文件"农药测试_MRM.qgm"。
- 3 单击菜单栏中"采集"栏下"下载初始参数"。

6.5.1.2 创建批处理表

1 单击助手栏中【批处理】图标。

2 单击【文件】菜单中的【新建批处理文件】。

3 在批处理表中输入相应信息和参数。

					\				
	样品瓶号	样品名称	样品 ID	样品类型	分析类型	方法文件	数据文件	级别号	进样体积
1	1	std10ppb		1:标准:(I)	IT QT	药测试_MRM.qgm	\10ppb-MRM.qgd	1	1
2	2	std50ppb		1:标准	IT QT	药测试_MRM.qgm	\50ppb-MRM.qgd	2	1
3	3	std100ppb		1:标准	IT QT	药测试_MRM.qgm	100ppb-MRM.qgd	3	1
4	4	未知样		0:未知物	IT QT	药测试_MRM.qgm	未知样-MRM1.qgd	1	1
5	5	未知样		0:未知物	IT QT	药测试_MRM.qgm	未知样-MRM2.qgd	1	1
			· ·	$\overline{}$	/				
				ı				•	
				1				2.	
				1				_	

参考

- 1)"样品类型"中设置标准溶液为"1:标准",未知样品为"0:未知物"。其中,对第一个标准溶液显示"1:标准:(I)",表示初始化校准曲线,即清除方法中原先可能有的校准曲线。
- 2)"级别号"中数字依次对应标准溶液的不同浓度,即组分表中设置的不同校准级别所对应的浓度值。

说明:

对于未知样品来说,如果要将结果自动换算成实际样品中的浓度,需要事先输入"样品量"和"稀释因子",按照下列步骤进行。

(1) 在表格中单击右键,选择"表样式"。

(2) 在"表样式"中,选择"样品量"和"稀释因子"单击 添加 >> 添加 >> 添加到显示项目中。

(3) 在表格中输入"样品量"和"稀释因子"数值。仅需对未知样品输入"样品量"和"稀释因子"。

样品名称	样品ID	样品类型	分析类型	方法文件	数据文件	级别号	进样体积	样品里	稀释因子
std10ppb		1:标准:(I)	IT QT	药测试_MRM.qgm	\10ppb-MRM.qgd	1	1	1	1
std50ppb		1:标准	IT QT	药测试_MRM.qgm	\50ppb-MRM.qgd	2	1	1	1
std100ppb		1:标准	IT QT	药测试_MRM.qgm	100ppb-MRM.qgd	3	1	1	1
未知样		0:未知物	IT QT	药测试_MRM.qgm	未知样-MRM1.qgd	1	1	0.5	10
未知样		0:未知物	IT QT	药测试_MRM.qgm	未知样-MRM2.qgd	1	1	0.5	10

4 批处理表设置改完毕后,单击【文件】菜单中的【另存批处理文件】。

5 输入批处理表文件名,单击【保存】。

6.5.1.3 运行批处理表

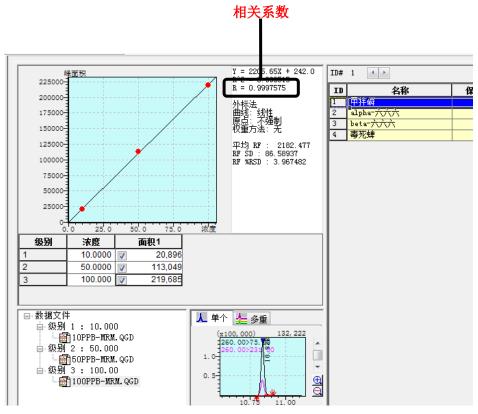
单击助手栏中的【开始】图标,执行批处理,标准样品和未知样品按表中所设自动依次进样分析。

注:

- 1) 批处理表运行时,要修改批处理表,单击【暂停/重启】图标后进行修改,修改完毕后再次单击【暂停/重启】图标。
- 2) 要强行中止批处理运行,单击【停止】图标。
- 3) 如要在批处理结束后,仪器进入节能模式,选择【批处理】菜单中的【批处理结束后进入节能模式】

当出现节能模式确认信息时,单击【是】。

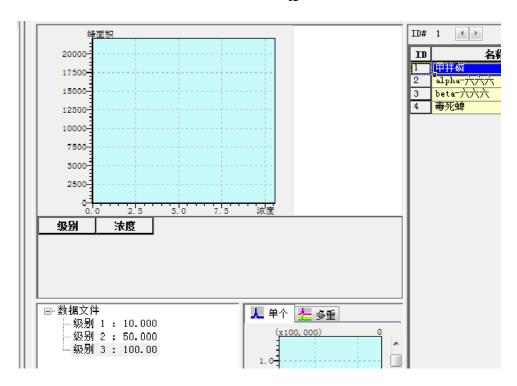
批处理结束后, 仪器即进入到节能模式。



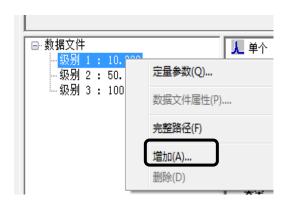
6.5.2 检查和修正校准曲线

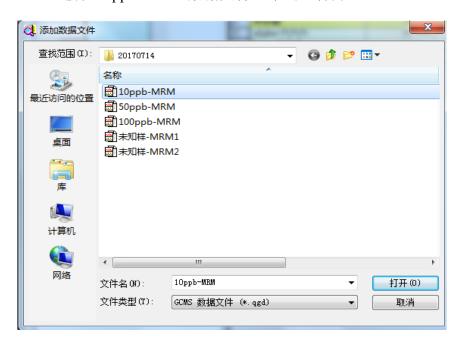
1 启动【GCMS 再解析】程序,单击"再解析"助手栏中的【校准曲线】图标。

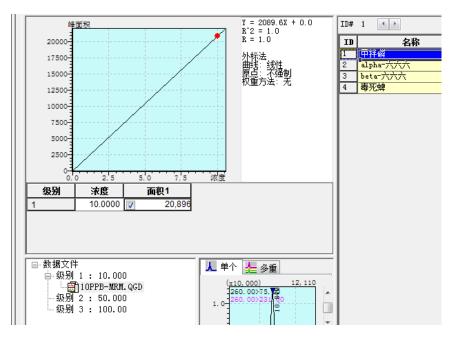
- 2 打开方法文件"农药测试_MRM.qgm",此时方法中校准曲线已自动生成。
- 3 在化合物表中选择一个化合物,显示该化合物的校准曲线。

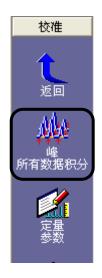

说明:

如果在标准样品采集时未指定类型为【标准】,而是以【未知样】采集,则需手动生成校准曲线。手动生成校准曲线步骤如下:


(1) 启动【GCMS 再解析】程序,并单击助手栏中的【校准曲线】图标。

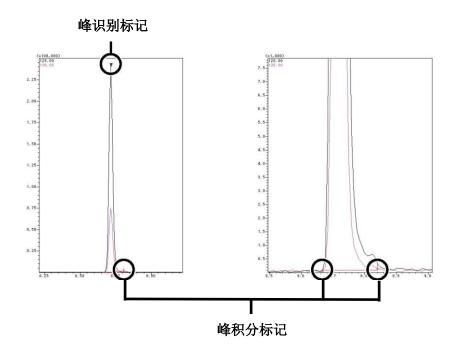

(2) 打开方法文件"农药测试_MRM.qgm",此时方法中没有校准曲线。


(3) 右键单击【级别1: 10】处,在弹出菜单中选择【增加】

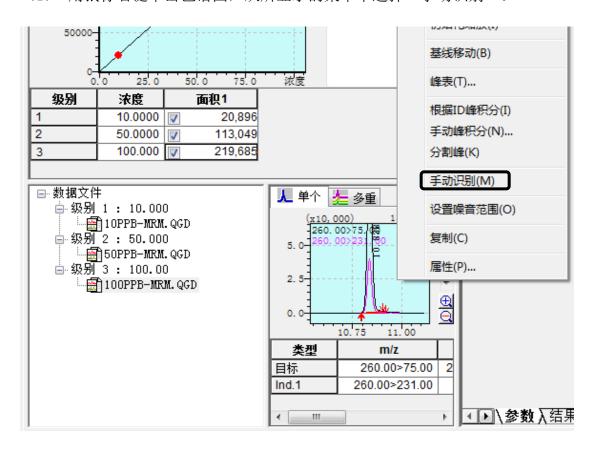

(4) 选择"10ppb-MRM"数据文件,单击【打开】

显示如下:

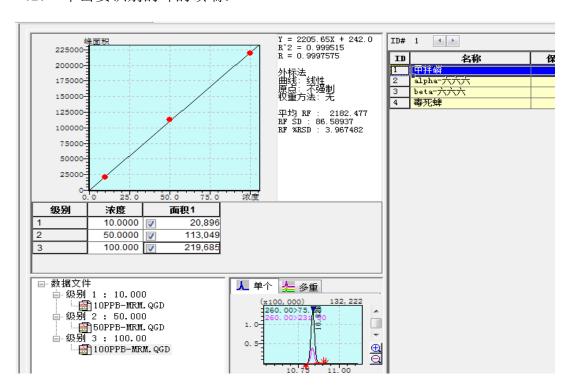
(5) 依次添加其余数据后,单击助手栏中【峰 所有数据积分】



(6) 生成校准曲线,如下显示:

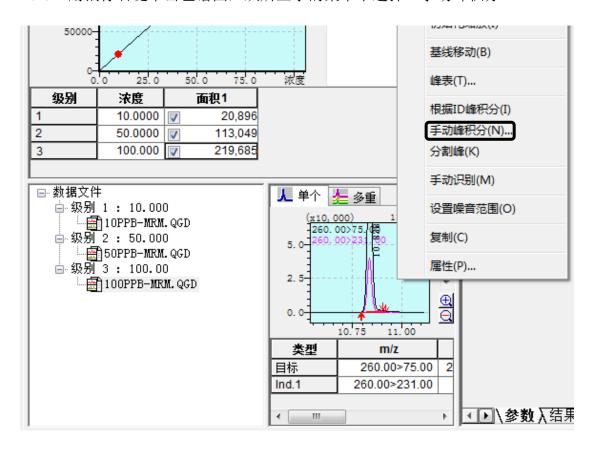

4 如果没有识别或没有检测到任何峰,进行手动识别和手动峰积分。

检测到的峰受到基于保留时间和离子比率(峰识别标记)识别的影响。

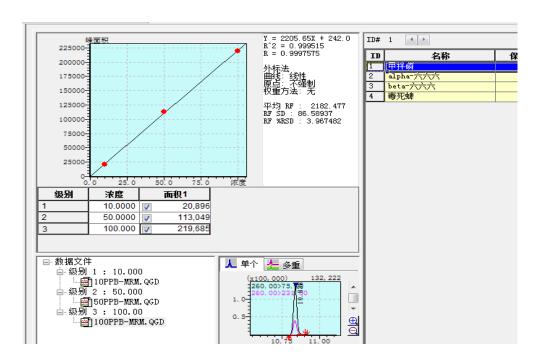


手动识别

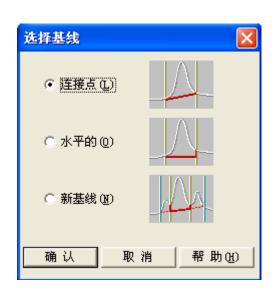
(1) 用鼠标右键单击色谱图,从所显示的菜单中选择"手动识别"。



(2) 单击要识别的峰的顶端。



手动峰积分


(1) 用鼠标右键单击色谱图,从所显示的菜单中选择"手动峰积分"。

(2) 按住鼠标左键,从峰的起点拖动鼠标到终点。

(3) 选择【连接点】,单击【确定】。

注: 执行自动峰积分(峰检测标记)后,在色谱图中检测到峰。

5 修正校准曲线后,单击【文件】菜单中【保存方法文件】。 至此,方法文件建立完毕。

6.5.3 修正校准曲线后重新定量未知样品

一旦对校准曲线进行过修正,则应当未知样品的数据使用新的校准曲线重新 计算。

1 单击【再解析】助手栏中的【批处理】图标。

2 单击助手栏中的【选择数据文件】图标。

3 选择用于重新定量的数据文件,单击 (添加),添加需要处理的数据文件。

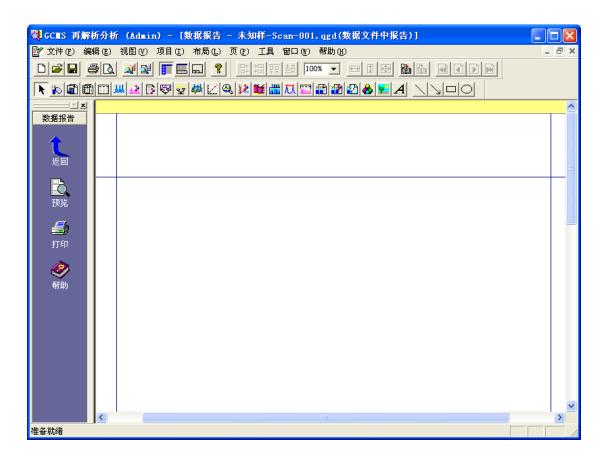
4 单击【确定】,显示批处理表。

	样品名称	样品ID	样品类型	分析类型	方法文件	数据文件	级别号
1			0:未知物	IT QT	测试_MRM.qgm	未知样-MRM1.qgd	1
2			0:未知物	IT QT	测试_MRM.qgm	未知样-MRM2.qgd	1

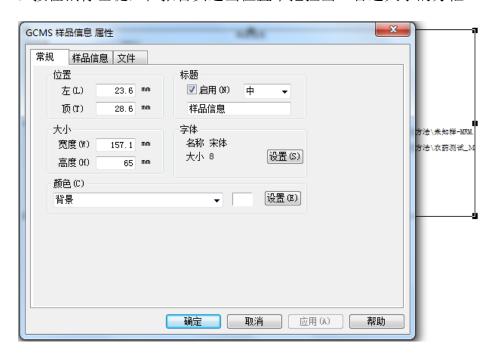
5 单击助手栏中的【开始】图标,即使用修正校准曲线后的方法重新计算未知样品数据。

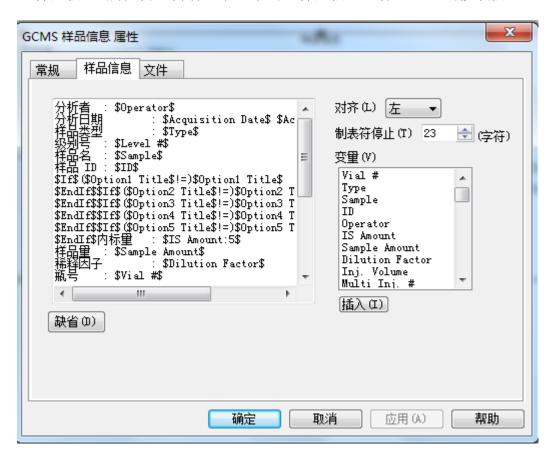
6.6 制作定量报告

通过创建报告,设置报告格式,输出报告。 以下内容以数据文件"未知样-MRM1.qgd"为例。


- 1 打开【GCMS 再解析】窗口。
- 2 单击助手栏中【定量】图标,打开数据文件"未知样-MRM1.qgd"。

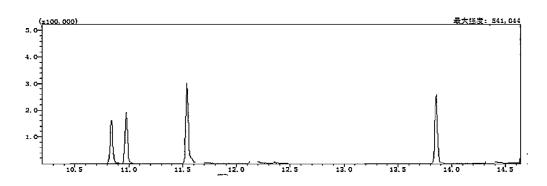
3 单击助手栏中【报告】图标


显示报告页界面


4 单击【项目】菜单合适的项目,如【样品信息】。

5 按住鼠标左键,在报告页适当位置中拖拉出一合适大小的方框

6 样品信息 属性窗口自动显示,单击【样品信息】标签,适当修改信息


7 依次再次添加【项目】菜单中【色谱图】和【定量】/【表格】,并根据需要对相关属性进行合适设置。

8 修改完毕后,单击【文件】菜单中【另存格式文件】。输入报告格式文件名称如"定量报告",单击【保存】,定量报告制作完毕。

定量报告示例

样品信息

分析者	: Admin
分析日期	: 2017-7-14 19:10:48
样品类型	: Unknow
级别号	: 1
样品名	: 未知样
样品量	: 0.5
稀释因子	: 10
瓶号	: 4
进样体积	: 1
数据文件	: D:\GCMS 数据\20170714\未知样-MRM1.qgd
方法文件	: D:\GCMS 数据\20170714\农药测试_MRM.qgm

定量结果表

ID 号	保留时间	m/z	峰面积	峰高	浓度	单位	名称
1	10. 838	260. 00>75. 00	113049	65869	102. 29	ug/L	甲拌磷
2	10. 976	218. 90>182. 90	312267	189835	103. 21	ug/L	alpha-六六六
3	11.541	218. 90>182. 90	220939	126613	101.39	ug/L	beta-六六六
4	13.855	313. 90>257. 90	255382	153716	101. 21	ug/L	毒死蜱