

# 三重四极杆气质联用仪 GCMS-TQ8040

# MRM 分析方法建立操作指南



岛津企业管理(中国)有限公司

# 目 录

| 1 | 引   | 音                       | 3 |
|---|-----|-------------------------|---|
| 2 | 确分  | 定前体离子( <b>Q3</b> 全扫描分析) | 4 |
|   | 2.1 | 创建 Q3 全扫描方法             | 4 |
|   | 2.2 | 测定标准品的混合标准液             | 5 |
|   | 2.3 | 设定前体离子                  | 6 |
| 3 | 设   | 定产物离子和优化碰撞电压(产物离子扫描)1   | 3 |
|   | 3.1 | 创建产物离子扫描测定方法1           | 3 |
|   | 3.2 | 创建产物离子扫描批处理表1           | 5 |
|   | 3.3 | 运行产物离子扫描批处理表1           | 6 |
|   | 3.4 | 自动优化碰撞电压1               | 6 |
| 4 | 创   | 建 MRM 方法2               | 0 |
| 5 | 设分  | 定离子比率 <b>2</b>          | 2 |

# 1 引言

操作手册中描述了如何设定前体离子和产物离子的 m/z, 当进行 MRM 方法分析标准品时如何优化电压。利用标准品优化好的离子对及 CE 电压可得到较高灵敏度的数据。

## 仪器结构

<GC/MS> GCMS-TQ8030 或 GCMS-TQ8040

<Autosampler> AOC-20i or AOC-20i+s

## 软件配置

<Workstation> GCMSsolution Ver. 4.2 or later

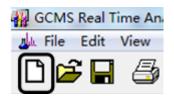
<File> MRM\_Optimization\_Tool.xlms SmartDatabase\_Blank.xlms

<Other> Microsoft Office Excel 2010

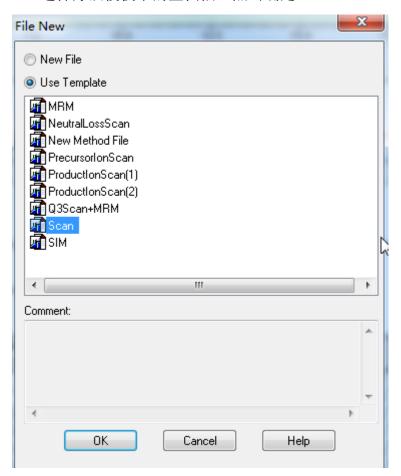
## 注意事项:

1、安装 GCMSsolution Ver. 4.0 软件后,MRM\_Optimization\_Tool.xlms SmartDatabase\_Blank.xlms 文件被安装在 GCMSsolution\SmartDatabase 文件 夹中。两个文件是只读文件,在使用之前先将其复制出来。

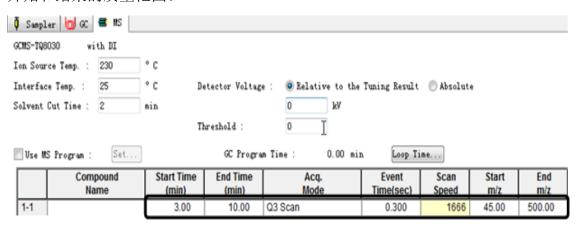
# 2 确定前体离子(Q3全扫描分析)


# 2.1 创建 Q3 全扫描方法

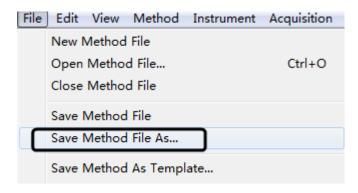
本部分主要创建 Q3 全扫描分析标准品的方法。


1) 打开[GCMS Real Time Analysis], 在[Real Time]辅助栏中点击 (Data Acquisition)。




2) 在工具栏中点击[New file]。




3) 选择方法模板中的全扫描,点击确定。



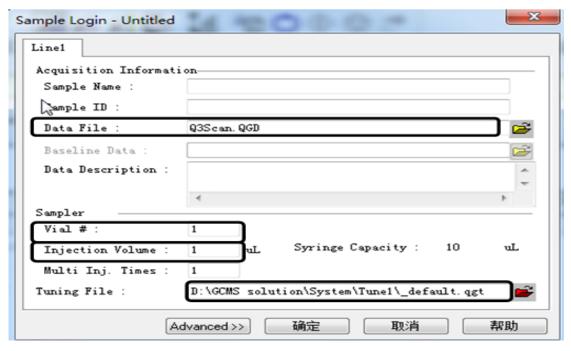
4)单击 MS 图标,设定质谱参数(包括离子源温度、接口温度和检测器电压),采集模式选择 Q3Scan,设定测量的开始时间,结束时间,event time 及测量的开始和结束的质量范围。



- 5)分别单击 Sample、GC 图标,设定相应的参数。
- 6) 在 File 菜单中选择方法文件另存,例如命名为 Q3Scan.gqm。



## 2.2 测定标准品的混合标准液


准备测量的标准液,利用 3.1 建立好的 Q3Scan.gqm 方法采集。

1) 进行单次分析,输入样品信息,在[Acquisition]辅助栏中点击 (Sample Login)

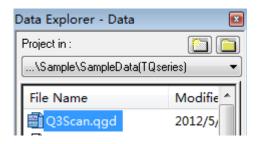


图标,样品登录窗口打开。

2)输入数据文件名,输入放置样品的样品瓶号和进样体积,选择指定的调谐文件,点击 OK。



- 3) 将标准品的样品瓶放到自动进样器上。
- 4) 在[Acquisition] 辅助栏中,点击 (Download) 图标。在 GC 和 MS 准备就绪(Ready)时测定自动开始运行。


#### 2.3 设定前体离子

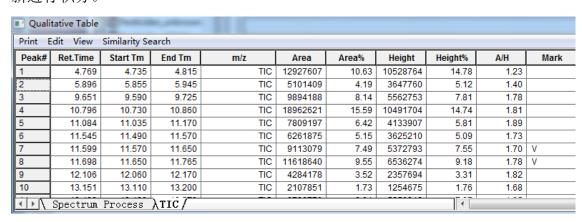
利用 3.2 节得到标准品的 Q3 Scan 数据文件来确定各组分的前体离子。

- 1) 双击[GCMS Postrun Analysis]图标,进入数据再解析界面。
- 2) 单击助手栏中【Create Compound Table】图标。

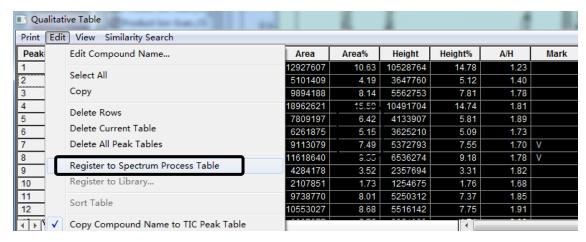


3) 打开已采集的扫描数据文件"Q3Scan.qgd"。

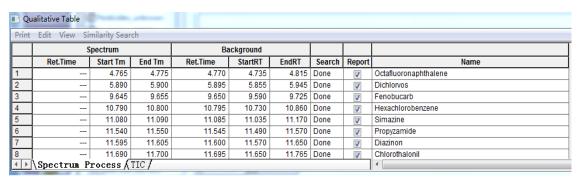



4) 单击助手栏中【Peak Integration for All TICs】图标,对检测到的色谱峰进行积分。




5) 单击助手栏中【Qualitative Table】图标,打开定性表窗口。

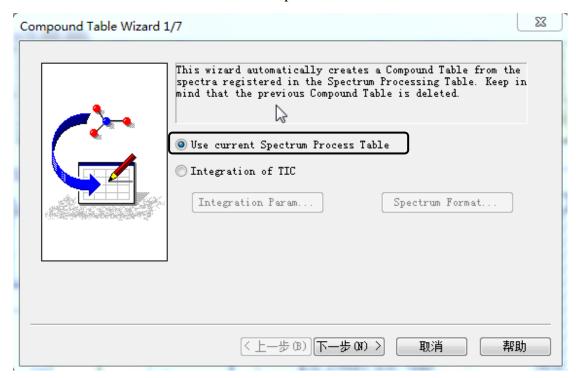



6)单击助手栏中【Qualitative Table】图标,打开定性表窗口。在 [TIC] 图标页,确保所有测定的化合物都被检测到。如果有些化合物检测不到,改变积分参数重新进行积分。

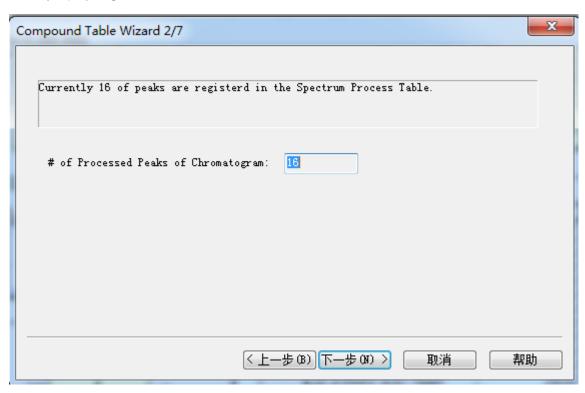


7) 选中定性表中所有行,从 Edit 中选择[Register to Spectrum Process Table]。

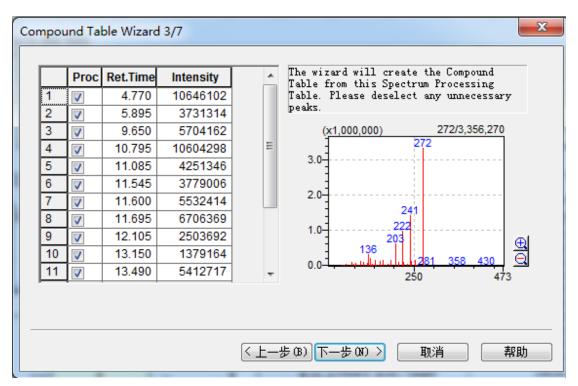



8) 点击 [Spectrum Process] 图标, 在[Similarity Search]菜单下选择[Search All Table]。

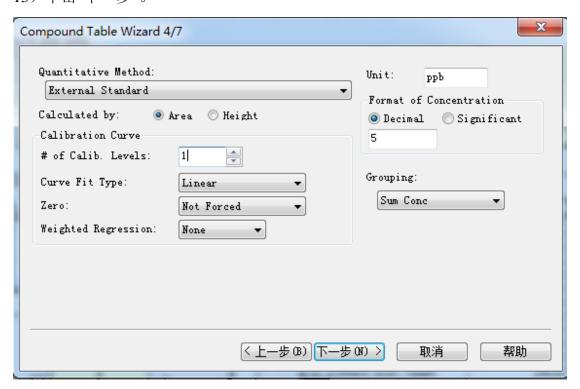



9) 单击组分表助手栏中的【 Wizard (new)】图标。




10)在向导窗口中,选择【Use current Spectrum Process Table】并单击【下一步】。



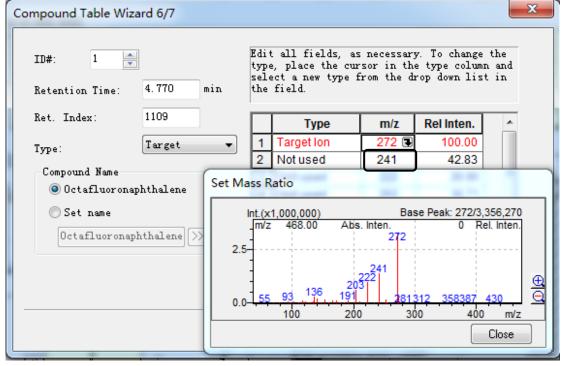

11) 单击"下一步"。



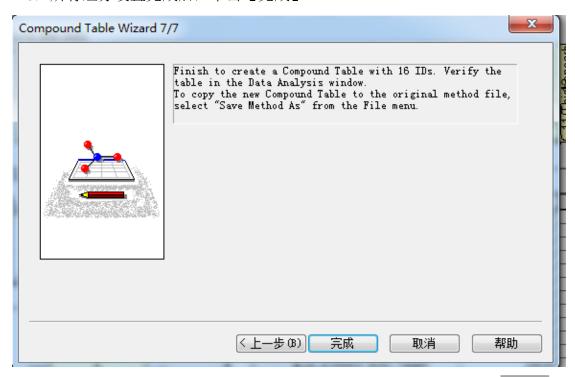
12) 单击"下一步"。



## 13) 单击"下一步"。




14)在 [Compound Table Wizard 5/7]窗口,在[# of Reference Ions]设置 0,单击"下一步"。


注:如果只使用一个前体离子,# of Reference Ions 设置 0 即可。如需使用 2 个前体离子,# of Reference Ions 设置 1。

| Compound Table Wizard 5/7                                        | X                                                                                                                       |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                                  | tration for each level. Then set the amount of<br>Internal Standard field. In the Number of Reference<br>reference ion. |
| Concentration Standard:  Level Conc.  1 1  Internal Standard:  1 | Ion Settings Target Ion:  TIC MIC MC  # of Reference Ions:  O   Decimal for mass:  None  Default Ion Allowance:  30 %   |
|                                                                  | 〈上一步(B) 下一步(N)〉 取消 帮助                                                                                                   |

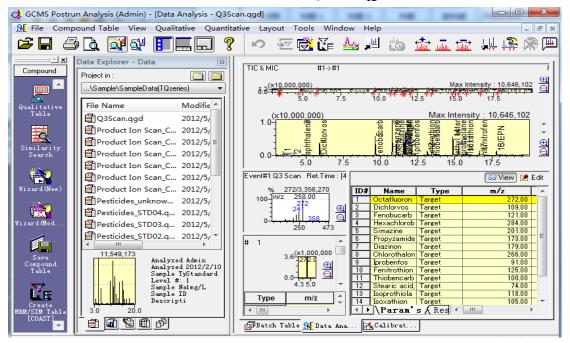
15)在[Compound Table Wizard 6/7] 窗口,设置所有标准品的前体离子的m/z。 单击"下一步"。



16) 所有组分设置完成后,单击【完成】。



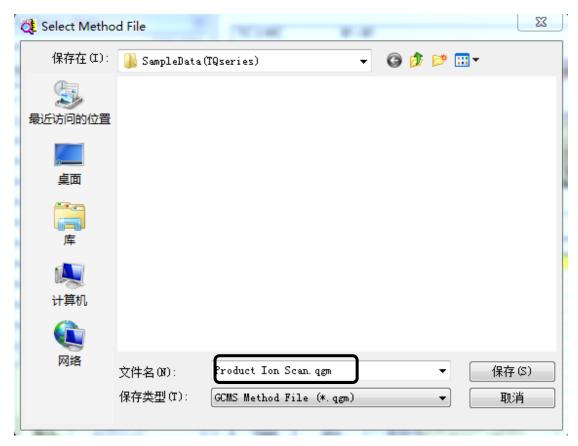
17)创建完成新的化合物表,显示于【Param】标签中。将化合物表从 图 Edit 编辑模式切换为 6d View 显示模式。


| ID#                              | Name          | Туре   | m/z    | Ret.Time | Ret. Index | Unit |  |  |  |  |
|----------------------------------|---------------|--------|--------|----------|------------|------|--|--|--|--|
| 1                                | Octafluoron   | Target | 272.00 | 4.770    | 1109       | ppb  |  |  |  |  |
| 2                                | Dichlorvos    | Target | 109.00 | 5.895    | 1241       | ppb  |  |  |  |  |
| 3                                | Fenobucarb    | Target | 121.00 | 9.650    | 1605       | ppb  |  |  |  |  |
| 4                                | Hexachlorob   | Target | 284.00 | 10.795   | 1712       | ppb  |  |  |  |  |
| 5                                | Simazine      | Target | 201.00 | 11.085   | 1740       | ppb  |  |  |  |  |
| 6                                | Propyzamide   | Target | 173.00 | 11.545   | 1783       | ppb  |  |  |  |  |
| 7                                | Diazinon      | Target | 179.00 | 11.600   | 1789       | ppb  |  |  |  |  |
| 8                                | Chlorothalon  | Target | 266.00 | 11.695   | 1798       | ppb  |  |  |  |  |
| 9                                | Iprobenfos    | Target | 91.00  | 12.105   | 1838       | ppb  |  |  |  |  |
| 10                               | Fenitrothion  | Target | 125.00 | 13.150   | 1942       | ppb  |  |  |  |  |
| 11                               | Thiobencarb   | Target | 100.00 | 13.490   | 1977       | ppb  |  |  |  |  |
| 12                               | Stearic acid, | Target | 74.00  | 14.875   | 2125       | ppb  |  |  |  |  |
| 13                               | Isoprothiola  | Target | 118.00 | 15.255   | 2167       | ppb  |  |  |  |  |
| 14                               | Isoxathion    | Target | 105.00 | 15.760   | 2224       | ppb  |  |  |  |  |
| 15                               | Chlornitrofe  | Target | 317.00 | 16.670   | 2330       | ppb  |  |  |  |  |
| 16                               | EPN           | Target | 157.00 | 17.810   | 2470       | ppb  |  |  |  |  |
| 17                               |               | Target | TIC    | 0.000    | 0          | ppb  |  |  |  |  |
| Param's λ Results Λ GroupParam's |               |        |        |          |            |      |  |  |  |  |

18) 保存数据文件。

# 3 设定产物离子和优化碰撞电压(产物离子扫描)

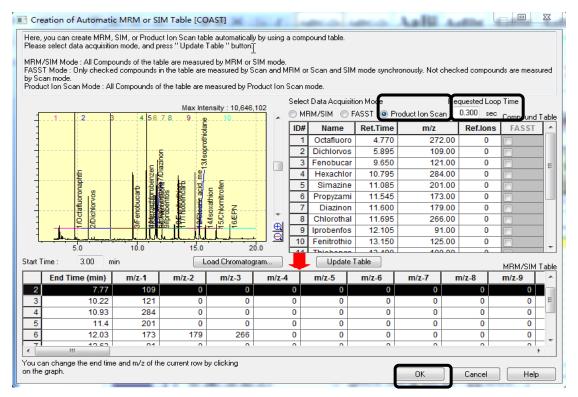
## 3.1 创建产物离子扫描测定方法


1) 打开已编辑了化合物组分表的数据文件 Q3Scan.qgd。




2) 单击助手栏中的[Creation MRM or SIM Table[COAST]]



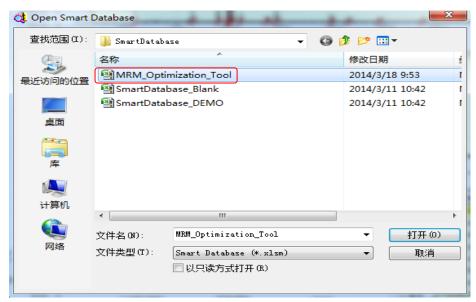

3) 在弹出对话框中,输入新的产物离子扫描方法名"Product Ion Scan.qgm"并单击"保存"。



4) 如果出现询问"是否使用原始方法的采集模式和分组设定模式?"点击【否】。



5)在[Select Data Acquisition Mode]中选择[Product Ion Scan] ,确认[Requested Loop Time]的值,默认值为0.3Sec,但也可以根据需要改变。



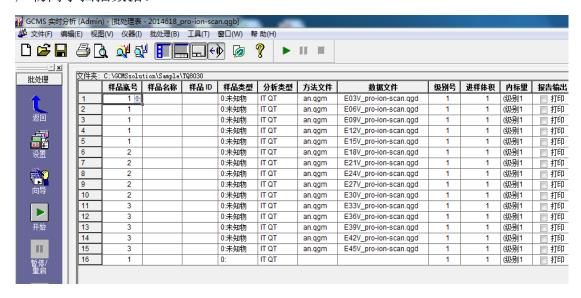

- 6) 调整每组的结束时间确保每组通道的个数不超过 4。
- 7) 点击确定,产物离子扫描方法建立完毕。


## 3.2 创建产物离子扫描批处理表

M

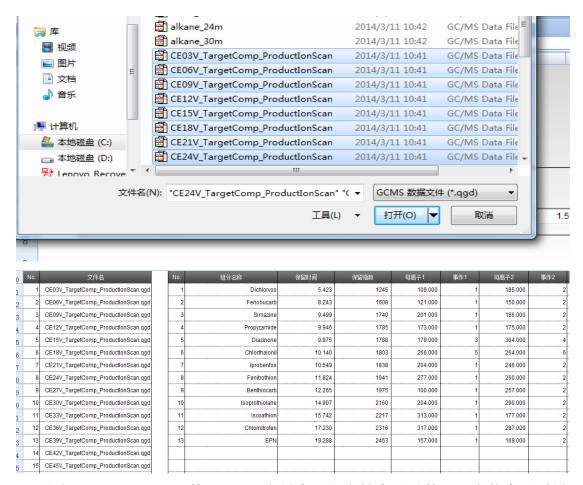
1) 点击辅助栏 MRM / SIM , 打开 "MRM\_Optimization\_Tool" 文件, 启用宏命令。




2)在"Create\_MethodBatch"表中,选择语种为中文,点击"方法文件"打开前面 创建的产物离子扫描方法"Product Ion 方法"。输入碰撞电压范围和电压间隔,每瓶标准溶液的进样次数(注:当进样次数较多时可能会发生一瓶溶液不够用的情况,此时可以使用多个样品瓶放置标样)。点击"创建批处理文件"创建不同 CE 电压的产物离子扫描方法及批处理表。



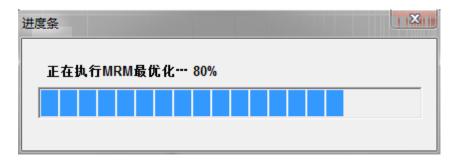
(注:点击"创建批处理文件"按钮后,自动在"Product Ion方法"所在子目录下生成以 当前年月日命名的子目录,所创建的各产物离子扫描方法及批处理表位于此子目录内)。


#### 3.3 运行产物离子扫描批处理表

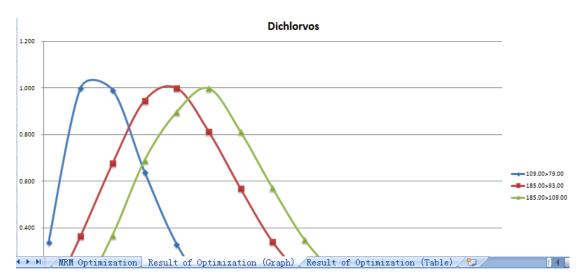
在实时分析窗口打开 3.2 节建立的产物离子扫描批处理表,运行批处理表,采集产物离子扫描数据。



#### 3.4 自动优化碰撞电压


1) 打开"MRM\_Optimization\_Tool"表中的"MRM Optimization"工作表,点击 "选择数据文件",打开 3.3 节采集的产物离子扫描数据




2)设定 MRM Transition 数(MRM 定量离子和定性离子对数)及产物离子质量数范围。

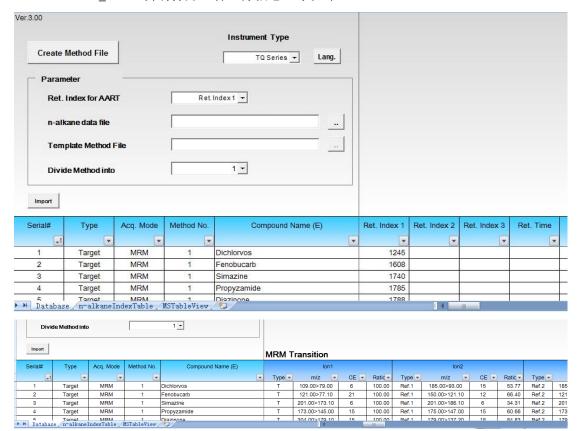


3) 点击"MRM 最优化",

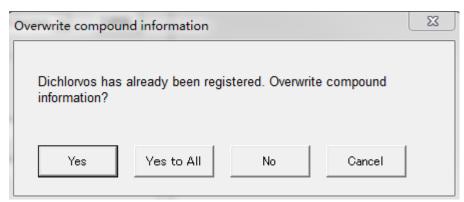


在"Result of Optimization (Graph)"自动生成 CE 优化曲线。




在"Result of Optimization (Table)"得到各组分的最佳 CE 电压及离子 丰度比值。

| 注册       | 哥到 Smart Database         |               |          |                  |           |             |       |               |    |       |
|----------|---------------------------|---------------|----------|------------------|-----------|-------------|-------|---------------|----|-------|
| 序列号      | 组分名称                      | 保留指数          | ₹ 离子1    |                  |           |             | 离子2   |               |    |       |
|          |                           |               | 类型       | m/z              | CE        | 比率          | 类型    | m/z           | CE | 比率    |
| 1        | Dichlorvos                | 1245          | Т        | 109.00>79.00     | 6         | 100.00      | Ref.1 | 185.00>93.00  | 15 | 53.7  |
| 2        | Fenobucarb                | 1608          | Т        | 121.00>77.10     | 21        | 100.00      | Ref.1 | 150.00>121.10 | 12 | 66.40 |
| 3        | Simazine                  | 1740          | Т        | 201.00>173.10    | 6         | 100.00      | Ref.1 | 201.00>186.10 | 6  | 34.3  |
| 4        | Propyzamide               | 1785          | Т        | 173.00>145.00    | 15        | 100.00      | Ref.1 | 175.00>147.00 | 15 | 60.6  |
| 5        | Diazinone                 | 1788          | Т        | 304.00>179.10    | 15        | 100.00      | Ref.1 | 179.00>137.20 | 18 | 84.8  |
| 6        | Chlorthalonil             | 1803          | Т        | 264.00>168.00    | 24        | 100.00      | Ref.1 | 266.00>170.00 | 24 | 70.6  |
| 7        | Iprobenfos                | 1838          | Т        | 204.00>91.10     | 9         | 100.00      | Ref.1 | 204.00>121.10 | 27 | 41.4  |
| 8        | Fenitrothion              | 1941          | Т        | 277.00>260.10    | 6         | 100.00      | Ref.1 | 277.00>109.10 | 15 | 69.4  |
| 9        | Benthiocarb               | 1975          | Т        | 100.00>72.10     | 6         | 100.00      | Ref.1 | 257.00>100.10 | 12 | 18.8  |
| 10       | Isoprothiolane            | 2160          | Т        | 204.00>118.00    | 6         | 100.00      | Ref.1 | 290.00>118.00 | 12 | 51.3  |
| 11       | Isoxathion                | 2217          | Т        | 177.00>130.00    | 9         | 100.00      | Ref.1 | 313.00>177.10 | 9  | 42.9  |
| 12       | Chlornitrofen             | 2316          | Т        | 317.00>287.00    | 12        | 100.00      | Ref.1 | 317.00>196.00 | 24 | 51.2  |
| 13       | EPN                       | 2453          | T        | 169.00>141.10    | 6         | 100.00      | Ref.1 | 169.00>77.10  | 21 | 51.9  |
|          |                           |               |          |                  |           |             |       |               |    | ₩     |
| MPM Onti | mization Result of Optimi | mation (Crap) | h) Pogul | t of Ontininatio | n (Tabla) | <b>\$</b> 7 | П     | 4             |    | Ь,    |


4) 点击"注册到 Smart Database"按钮,选择"SmartDatabase\_Blank"数据库或者其它已有的数据库,如农药库等,将各组分信息登记入数据库。



## SmartDatabase\_Blank 自动打开,各组分信息显示如下



5) 点击"Import"按钮,选择 Q3SCAN 方法,选择"Yes to All"

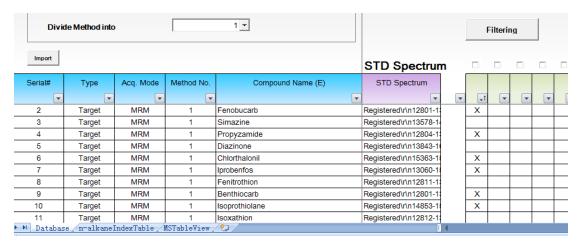


各组分保留时间自动载入,显示如下

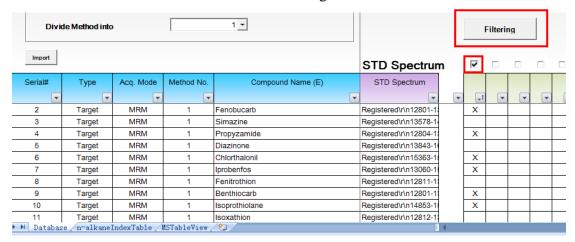


6) 输入其它所需信息,如 CAS 号等,编辑完毕后另存此文件,如 SmartDatabase\_XXXX。

# 4 创建 MRM 方法


1) 打开前面注册各组分信息的"SmartDatabase\_XXXX"数据库或者其它已有的数据库,如农药库等。




- 2)AART 用保留指数"选择不启用 AART" (注: 若使用 AART 则选用 Ret.Index1 或 Ret.Index2 等, 应选择正构烷烃的数据。)
- 3)选择 "模板方法文件"为 Q3SCAN 方法或产物离子扫描中任一方法,以加载 GC 及 MS 参数
- 4) 选择需要测定的目标组分
- a) 将不需测定的组分 Type 类型中 Target 删除

| Serial#     | Туре   | Acq. Mode  | Method No.  | Compound Name (E) | Ret. Index 1 | Ret. Index 2 | Ret. Index 3 | Ret. Time |
|-------------|--------|------------|-------------|-------------------|--------------|--------------|--------------|-----------|
| [           | ▼      | ▼          | <b>~</b>    | ▼                 | •            | <b>~</b>     | •            | ▼         |
| 1           | Target | MRM        | 1           | Dichlorvos        | 1245         |              |              | 5.434     |
| 2           | Target | MRM        | 1           | Fenobucarb        | 1608         |              |              | 8.239     |
| 3           |        | MRM        | 1           | Simazine          | 1740         |              |              | 9.475     |
| 4           | Target | MRM        | 1           | Propyzamide       | 1785         |              |              | 9.935     |
| 5           |        | MRM        | 1           | Diazinone         | 1788         |              |              | 9.971     |
| 6           | Target | MRM        | 1           | Chlorthalonil     | 1803         |              |              | 10.130    |
| 7           | Target | MRM        | 1           | Iprobenfos        | 1838         |              |              | 10.543    |
| 8           |        | MRM        | 1           | Fenitrothion      | 1941         |              |              | 11.815    |
| 9           | Target | MRM        | 1           | Benthiocarb       | 1975         |              |              | 12.262    |
| 10          | Target | MRM        | 1           | Isoprothiolane    | 2160         |              |              | 14.895    |
| K KI TO 1 T |        | 1 77 11 /1 | ROTE 1.3 TT | /6/               |              | 1            |              |           |

b) 或者使用组管理的方式,将需要测定的目标组分打上 X 或\*



在该组上方的复选框中点勾,再点击 Filtering (筛选) 按钮



之后打上 X 的目标组分会被排列在前并且仅这些组分的 Type 标记为 Target,其它组分的 Type 为空白(表示非目标组分)。

|            |              |                |              |                   | -                      |   |            |   |
|------------|--------------|----------------|--------------|-------------------|------------------------|---|------------|---|
| Serial#    | Туре         | Type Acq. Mode |              | Compound Name (E) | STD Spectrum           |   |            |   |
| ~          | ▼            | ▼              | <b>~</b>     | •                 | •                      | - | <b>↓</b> T | ▼ |
| 1          | Target       | MRM            | 1            | Dichlorvos        | Registered\r\n12801-1  |   | Х          |   |
| 2          | Target       | MRM            | 1            | Fenobucarb        | Registered\r\n12801-1  |   | X          |   |
| 4          | Target       | MRM            | 1            | Propyzamide       | Registered\r\n12804-1  |   | Х          |   |
| 6          | Target       | MRM            | 1            | Chlorthalonil     | Registered\r\n15363-1  |   | Х          |   |
| 7          | Target       | MRM            | 1            | Iprobenfos        | Registered\r\n13060-1  |   | X          |   |
| 9          | Target       | MRM            | 1            | Benthiocarb       | Registered\r\n12801-1  |   | X          |   |
| 10         | Target       | MRM            | 1            | Isoprothiolane    | Registered\r\n14853-1  |   | Х          |   |
| 3          |              | MRM            | 1            | Simazine          | Registered\r\n13578-14 |   |            |   |
| 5          |              | MRM            | 1            | Diazinone         | Registered\r\n13843-16 |   |            |   |
| 8          |              | MRM            | 1            |                   | Registered\r\n12811-1  |   |            |   |
| ▶ N Dataha | ra n-alkanal | ndavTahla /1   | MSTableWiew. | / <del>\$</del> 7 |                        | 4 |            |   |

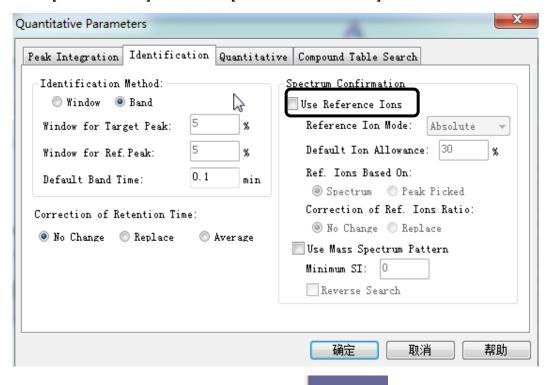
<sup>\*</sup>分组管理可设定特定化合物组方便方法建立

5) 点击"创建方法文件",设定 MS 表参数



6) 点击 OK, 保存方法为"xxx-MRM"。 实时分析中打开 "xxx-MRM" 方法,在 MS参数中选择合适的检测器电压(通常设定为调谐电压+0.6kV左右),保存方法文件。

# 5 设定离子比率


- 1) 以第 4 节中建立的方法文件"xxx-MRM"采集某一浓度的标准样品,如MRM.qgd。
- 2) 打开再解析界面,打开数据文件"MRM.qgd"。
- 3)在[Postrun]辅助栏中单击(Quantitative)图标。

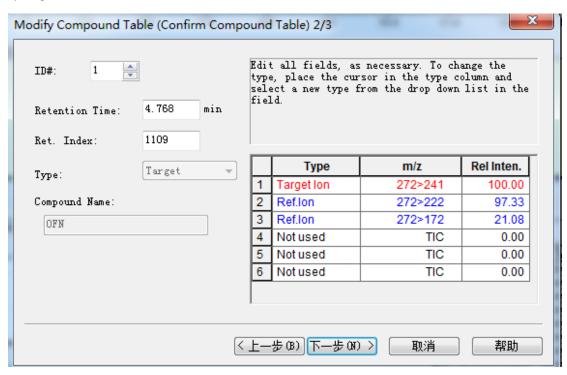


- 4) 在[Quantitative]辅助栏中点击[Quantitative Parameters], 打开定量参数窗口。
- 5) 在[Peak Integration]标签中设置合适的的积分参数,使待测化合物的色谱峰

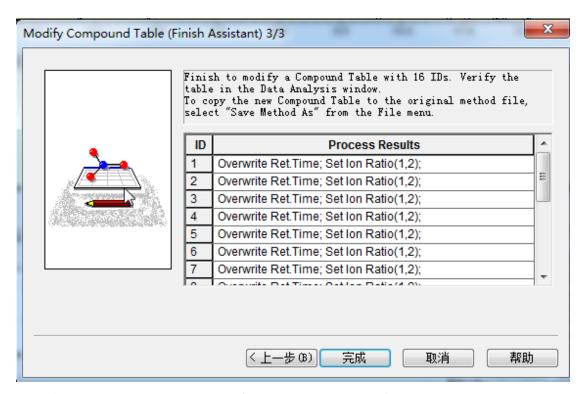
## 被检测。


6) 在 [Identification]标签中清除[Use Reference Ions]。

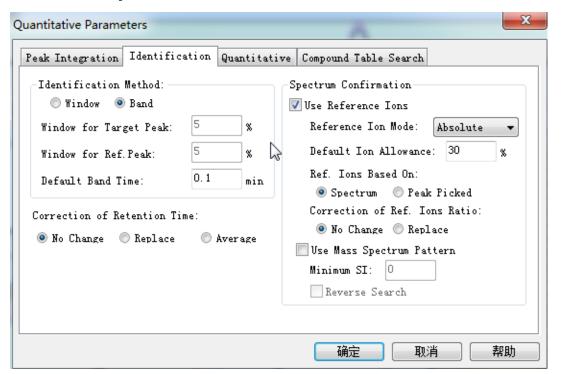



- 7) 单击辅助栏中【Peak Integration】图标 Integration 进行定量积分。
- 8) 在[Postrun]辅助栏中单击(Create Compound Table)图标。




- 9) 在(Create Compound Table)辅助栏中单击(Wizard (Modify)图标
- 10) 显示[Modify Compound Table (Assist Reference Ion Ratio) 1/3]窗口。 选择[Set Reference Ion ratios to existing reference ions]。




- 11) 单击下一步。
- 12)在[Modify Compound Table (Confirm Compound Table) 2/3]窗口中,单击下一步。



20) 在[Modify Compound Table (Finish Assistant) 3/3]窗口中,点击完成,化合物的离子比率被设定。



21) 在[Qualitative Parameters]窗口的[Identification]标签下,选择[Use Reference lons]。



22) 在菜单栏[File]中选择[Save Method File],覆盖保存方法文件。至此,MRM 方法文件建立完毕。