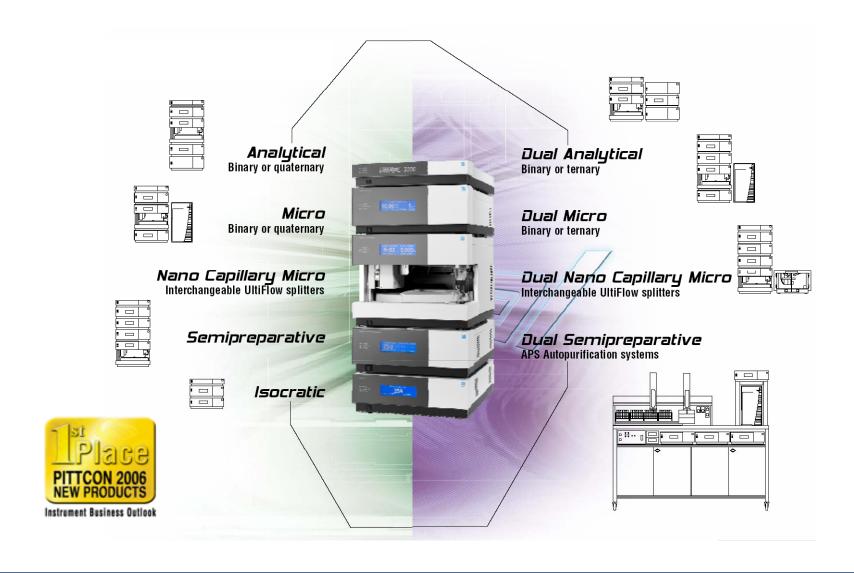


Dionex 液相色谱用户培训

张丽娟

2011年


The world leader in serving science

Dionex- 遍布世界的销售网和技术支持

▲ DIONEX 在各国设立的分公司 ● DIONEX 各国办事处和代理商

戴安 UltiMate 3000 液相色谱的各种组合

UltiMate 3000 系统的平台及序列

DGLC x2 双梯度系统

紧凑系统

标准系统

- ■可靠性高; 紧凑
- ■积木式; 灵活性
- ■多种配置
- ■应用领域广泛
- ■流速范围从纳升级至半 制备级

钛系统

- ■专为多肽、蛋白、抗体 等生化样品分析而设计
- ■钛金属泵
- ■非金属流路的进样器及 检测器

RSLC 超高效液相色谱

- ■RSLC 系统
- ■1000 bar 耐压; 流速至 8 ml/min
- 柱温箱: 5-110°C
- 100 Hz DAD, MWD, VWD
- ■可使用各种颗粒度色 谱柱
- ■超高速/超高分辨率

- ■独特的 x2 双梯度液 相色谱系统
- ■各种高级液相色谱应
- ■串联及并联
- ■在线样品处理
- ■自动方法开发
- ■自动离线多维色谱
- ■在线多维色谱

UltiMate 3000 液相色谱平台

RSLC

x2 LC

Dionex液相色谱仪的特点

- 高性能、可靠且容易使用的智能化液相色谱概念
 - 流速范围最宽的液相色谱系列
 - 包括双梯度系统在内的 Intelligent LC(LCi)技术
 - 种类最多、应用领域最宽的超高效液相色谱(U-HPLC)
 - 生化兼容型液相色谱系列
- 变色龙色谱网络软件管理下的网络色谱技术
 - 可控制三十多个生产厂家的近 300 种的色谱部件
- 混合基质液相色谱柱

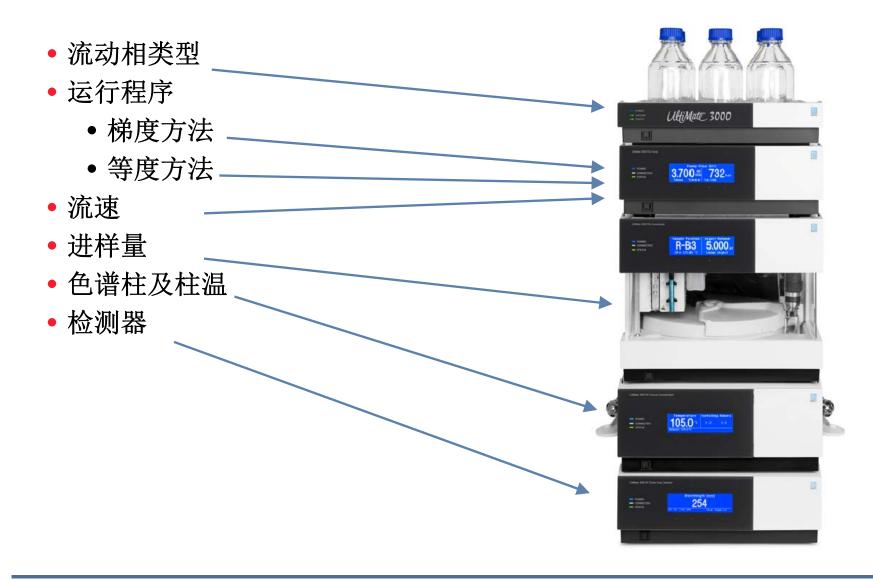
液相色谱应用技术

分析样品的组分时要了解

- 灵敏度的要求有多高?
- 样品的本底是否很复杂?
- 有多少组份要分析?
- 对分析的精确度、准确度等有多高要求?
- 是否因是日常检验,而要求方法容易使用?

分离(制备)样品组分时要了解

- 要分离的组份在样品中的含量很高? 还是微量?
- 要分离(制备)的样品量有多大?
- 是否需要保持生物活性?
- 对分离产物纯度的要求有多高?
- 纯度或活性的鉴定如何完成?



使用文献方法注意点

- 色谱柱填料的种类、品牌是否相同?
- 注意文献方法的流动相
 - 是否损害色谱柱?
 - 如色谱填料品牌不同,需要调整流动相
- 注意色谱柱的规格: 内径、柱长
 - 需要调整流速、进样量
- 注意梯度条件
- 了解系统的滞后体积(梯度)

如何建立一个HPLC方法一必须具备如下条件

完整的HPLC方法(色谱条件) - 所需的基本方法参数

- 液相色谱实验所需的基本参数
 - 检测器参数: 紫外检测波长, 灵敏度等
 - 固定相: 色谱柱类型及内径、长短
 - 流动相: 种类及配比, 等度或梯度
 - 流动相输送系统参数: 流速
 - 温度控制
 - 进样量

方法参数的选择及其影响

方法参数的选择及其影响

- 选择HPLC检测器
- 选择合适的色谱柱
- 反相色谱常用流动相

一)选择HPLC检测器

- 没有任何一种单独的检测器可以适应所有的液相色谱分离!
- HPLC检测器可以分为:
- 溶质性质检测器(选择型)
 - 对溶质的物理或化学性质响应,一般不反应流动相的变化(选择型)
- 整体性质检测器(通用型)
 - 不管是否有溶质,对流动相任何物理性质的变化作出响应(通用型)

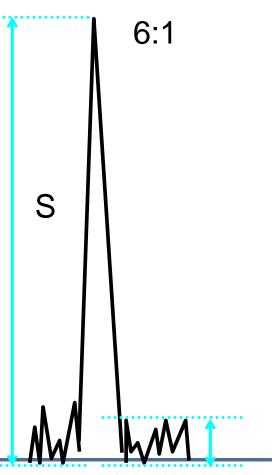
选择液相色谱的检测器

RI	ELSD	CAD
ug	ng	ng
10 ⁴	否	10 ⁴
是	否	否
是	否	否
否	是	是
	ug 10 ⁴ 是 是	ug ng 10 ⁴ 否 是 否

选择性检测器	ABS	FL	EC	Cond	MS
灵敏度	ng	pg	fg	pg	pg
线性范围	10 ⁵	10 ³	10 ⁶	10 ⁵	10 ³
流速敏感	否	否	是	是	是
温度敏感	否	否	是	是	是
破坏件	否	否	是	否	是

理想的HPLC检测器

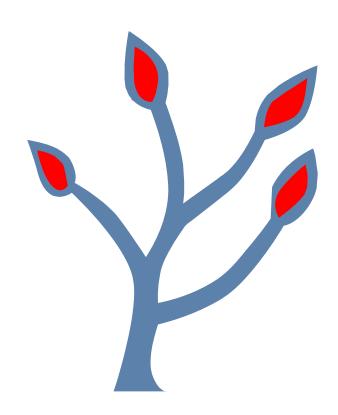
- 高灵敏度; 可忽略基线噪音
- 宽的线性范围
- 对压力、温度及流速等变化不敏感
- 长时间操作的稳定性
- 低死体积
- 非破坏性
- 选择性


灵敏度: 信噪比

• 灵敏度是信号与噪音的比值;即峰高与基线噪音的比值(S/N)

• 检测限(LOD): S/N = 3

• 定量限(LOQ): S/N = 10


- 好的信噪比有利于:
 - 更好的色谱峰确认
 - 更好的定量
 - 更好地完成色谱峰纯度/均一性

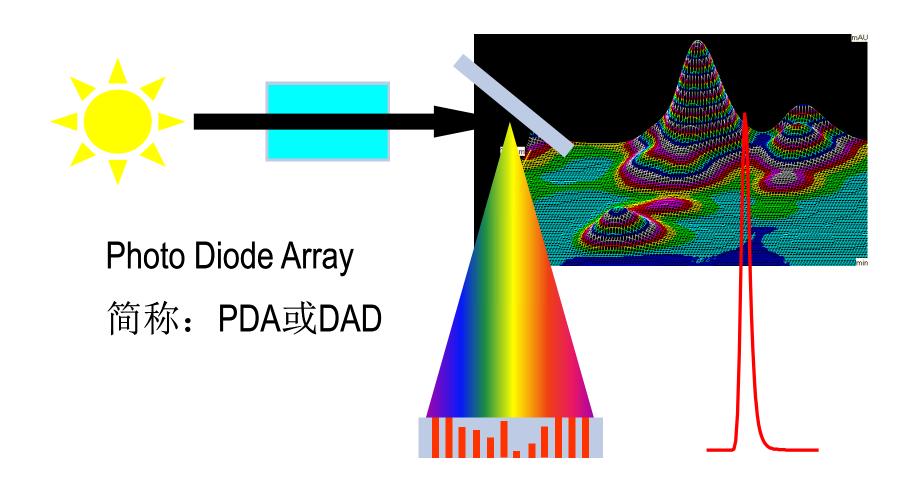
选择液相色谱的检测器

要考虑的因素:

- 你要分离的化合物/样品的化学特性
 - 化学结构、分子量及紫外光谱等等
- 流动相的影响(溶剂、缓冲盐改性剂等)
- 梯度还是等度
- 灵敏度需求
- 采样频率
- 是否有双检测的需求

吸光度(UV/Vis)检测原理

- 原理: 基于被分析组分对特定波长紫外光的选择性吸收
- 定量基础: 比耳定律, A=KCL
 - 优点: 1) 对温度和流速不敏感
 - 2) 可用于梯度洗脱
 - 3) 灵敏度较高,ng级检测
 - 缺点: 选择性检测器, 仅适用于测定有紫外吸收的物质



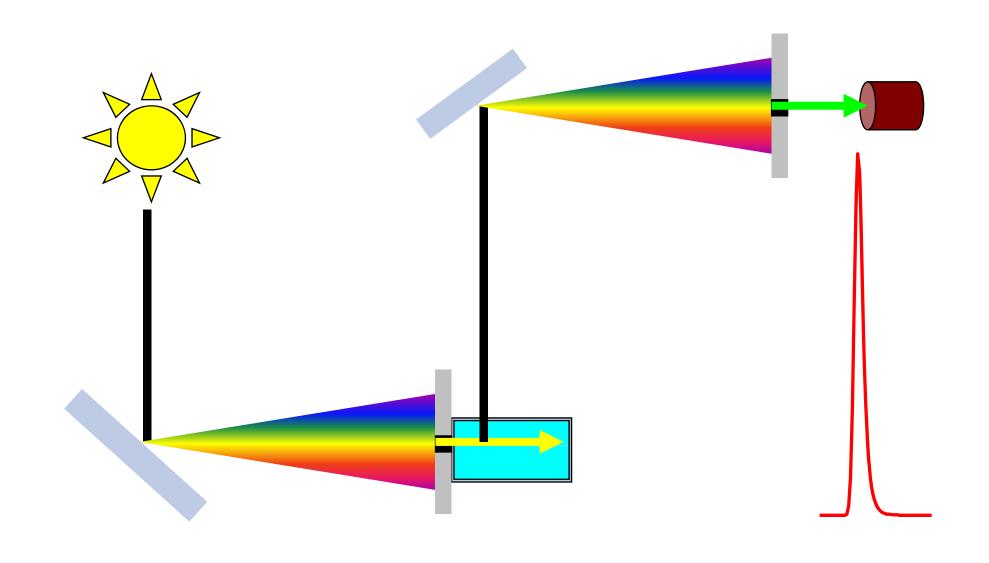
吸光度(UV/Vis)检测的应用

- 大多数有机化合物有一定程度的吸光度,可以测定大多数的化合物,是目前实验室中使用最多的检测器
- 多数公司售出的检测器中75%以上是吸光度检测器(包括紫外/可见检测器和二极管阵列检测器DAD)

光电二极管矩阵(Photo Diode Array)

光电二极管矩阵检测器(DAD)的特点和用途

- 一种三维水平的吸光度检测器一采集三维谱图
- 兼顾紫外检测器及可见分光光度计的信息
 - 在收集色谱图的同时,得到光谱图
- 提供许多有用的功能
 - 色谱峰的纯度鉴定,色谱峰的确认
 - 可以发现单波长检测时未测到的峰
 - 任意波长的色谱再处理
 - 光谱信息
 - 光谱库的建立检索和拟合


荧光(Fluorescence)检测原理

• 原理:发荧光的化合物吸收光(UV或VIS)使其分子达到激发态,当其 返回到基态时发射光的现象即荧光

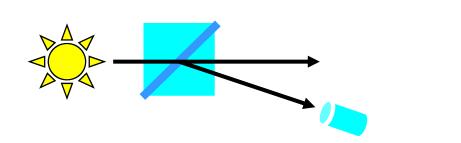
• 优点: 荧光检测器灵敏度高, pg级检测

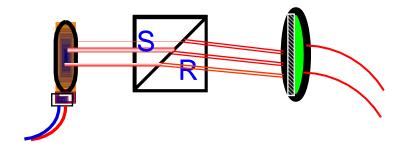
• 缺点: 不是所有化合物都有荧光,必要时需要衍生

荧光检测器原理

荧光检测器的应用

- 环境中的污染物
 - 多环芳烃(PAH),多酚,氨基 甲酸酯等
- 食品、饮料
 - 食品中的毒素; 例如: 黄曲 霉毒素
 - 染料
 - 维生素及衍生氨基酸
- 生物技术及制药


多环芳烃 (PAH)


黄曲霉毒素

氨基甲酸酯类杀虫剂

示差折光(Refractive Index)检测

- 示差折光检测器(RI)是第一个商品化的液相色谱检测器(上世纪六十年代末、七十年代初)
 - 通常被认为是一种通用检测器
 - 检测溶液中所有被溶解的溶质 一 非特异性
- 任何光学介质的折光率都被定义为光在该介质中与真空中的速度之比值

示差折光(RI)检测的原理

• 原理: 连续测定流通池中溶液折射率来测定试样各组分浓度

• 优点: 通用型检测器

• 缺点: 1) 对温度变化敏感

2) 不能用于梯度检测

3) 灵敏度低, ug级检测

示差检测器的应用

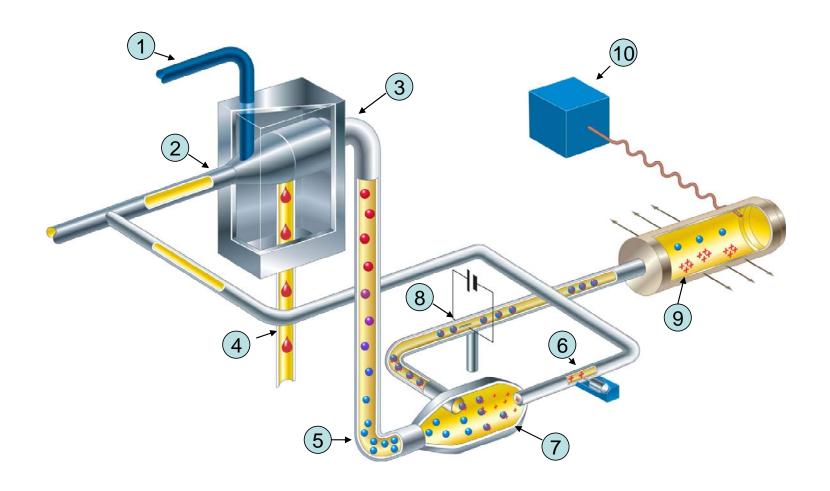
- 示差折光检测器是通用型检测器,如果选择合适的溶剂,几乎所有的物质都可以检测
- 特别适用于检测没有紫外吸收的化合物,例如糖类,醇类,酯类以及脂肪酸等
- 高分子化合物GPC,GFC分析以及复杂样品纯化

新型液相色谱通用型检测器: Corona电喷雾检测器

- CAD(Charged Aerosol Detectors)是 ESA独特的专利技术
- 近期发展最快的HPLC通用型检测技术
- 目前,世界上许多制药、化学、食品饮料和化妆品行业使用该检测器,应用于开发和生产环节

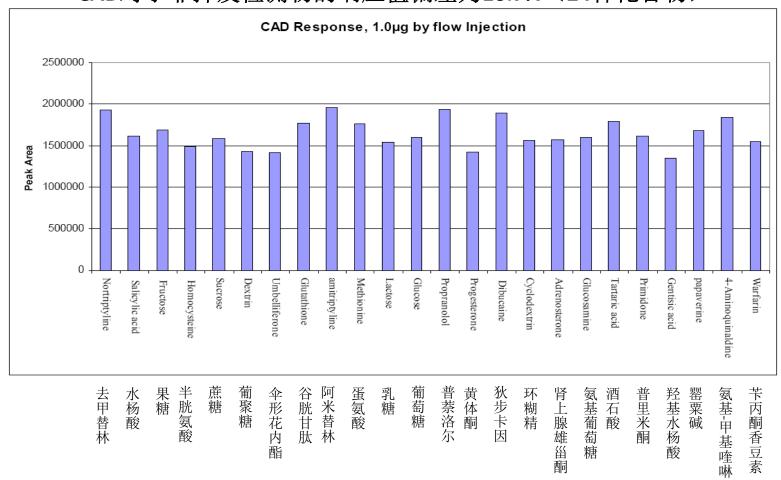
Dionex的两种型号的CAD检测器

Corona "classic"



Corona Ultra

Corona CAD电喷雾检测器原理图


性能

- 高灵敏性: 检测低至 ng 级
- 更一致的响应; 响应与分子结构无关
 - 当没有标准品时可做相对测量,例如不纯物和降解物
- 宽动态范围: 4 个数量级
 - ullet ng \sim ug
- 适用范围广
 - 分析任何非挥发性物质
- 重现性好
 - RSDs 一般在 2% 的范围内
- 操作简单
 - 可适用任何实验室,维护成本低

响应一致性

CAD对于非挥发检测物的响应值偏差为10.7%(24种化合物)

适用性宽

任何非挥发化合物在Corona CAD上均有响应, 响应值与其化学特性无关

分析物无需离子化!

应用

典型化合物

油脂

表面活性剂

甘油酯

活性药物成分

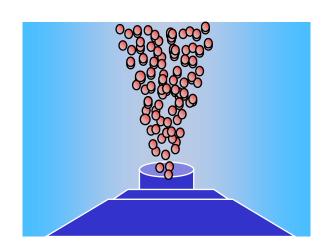
多肽

碳水化合物

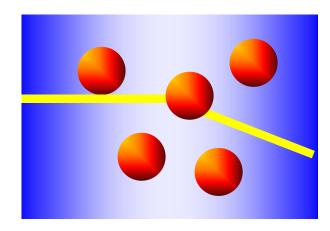
抗生素

聚乙二醇

小分子化合物


蛋白

Corona CAD是一项全新的高效液相色谱检测技术,其灵敏度 是ELSD的十倍。同时,它对于梯度洗脱的检测能力是RI所不具 备的。


蒸发光散射(ELSD)原理

- 用氮气把流动相吹成细雾状
- 流动相的液滴通过一个预加热的腔体后被蒸发掉
- 蒸发的溶剂被从检测器中除去
- 溶质的挥发性小于流动相,因此产生颗粒束与光束相交
- 被颗粒散射的光由光电倍增管(PMT)收集
- PMT的输出与溶质的存在量呈比例关系

ELSD 一 优点及应用领域

- 通用型 一 比流动相挥发性小的物质都能被检测
 - 可以作梯度实验;
 - 检测下限可到纳克级水平
 - 对环境条件不敏感; 可以使用有强紫外吸收的溶剂作流动相
- 应用领域:
 - 碳水化合物
 - •油脂及脂肪酸
 - 未衍生的氨基酸
 - 制药行业
 - 表面活性剂
 - 天然产物

ELSD 一 缺点

- 不能使用不挥发性的流动相(例如: 磷酸盐)
- 要求使用雾化气源(典型的是氮气或空气)
- 不同的色谱条件下雾化及除溶剂的参数需要重新优化
- 破坏性技术
- 蒸发出的溶剂要引到户外或通风橱里
- 对挥发性化合物的检测不理想
- 一般得到的是非线性校正曲线
- 某些化合物的检测灵敏度不如其他检测器

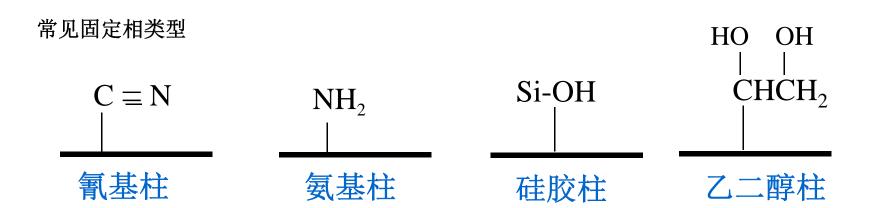
二)选择合适的色谱柱

- 色谱柱类型
 - 反相柱C18、C8、苯基、内嵌极性基团等
 - 正相柱硅胶、氨基柱、氰基、乙二醇柱等
 - 离子交换色谱柱 WAX、WCX、SCX等
 - 特殊色谱柱: 手性色谱柱(刷型、淀粉类、纤维素类、环糊精类等);凝胶色谱柱: 免疫亲和色谱柱等
- 规格
 - 长度、内径、粒径、孔径等
- 品牌、批号
 - Acclaim系列、Zorbax系列、Atlantis系列、国产色谱柱等

对色谱柱要有足够的了解

掌握柱子分离机理

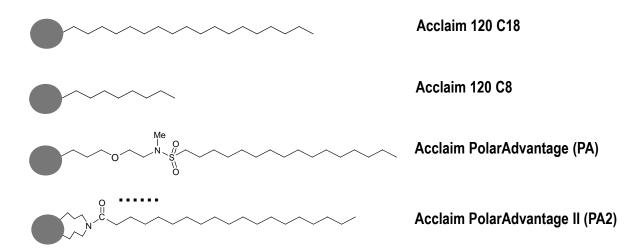
自己建立开发方法


根据分析物的分离机理分类

- 吸附色谱(正相色谱)
- 分配色谱(反相色谱)
- 离子交换色谱
- 体积排阻色谱
- 亲和色谱

正相色谱柱

• 吸附色谱(正相色谱)



以吸附为主要保留机理(相似相容) 常用非极性流动相,如正己烷、四氢呋喃等 极性小的化合物先被洗脱下来

反相色谱柱

• 分配色谱(反相色谱)

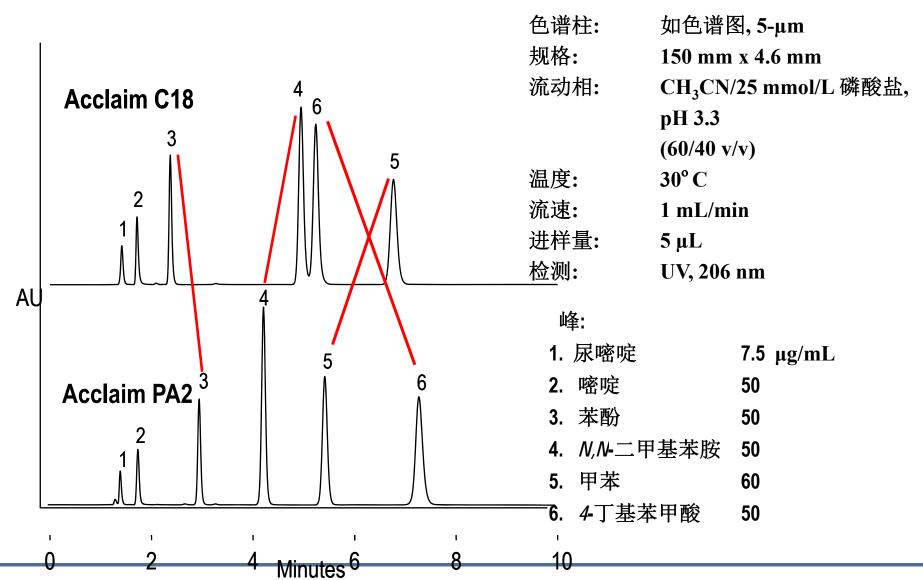
常见固定相类型

以"液-液分配"为主要分离机理 常用极性流动相,如甲醇、乙腈和水等等 极性大的化合物先被洗脱下来

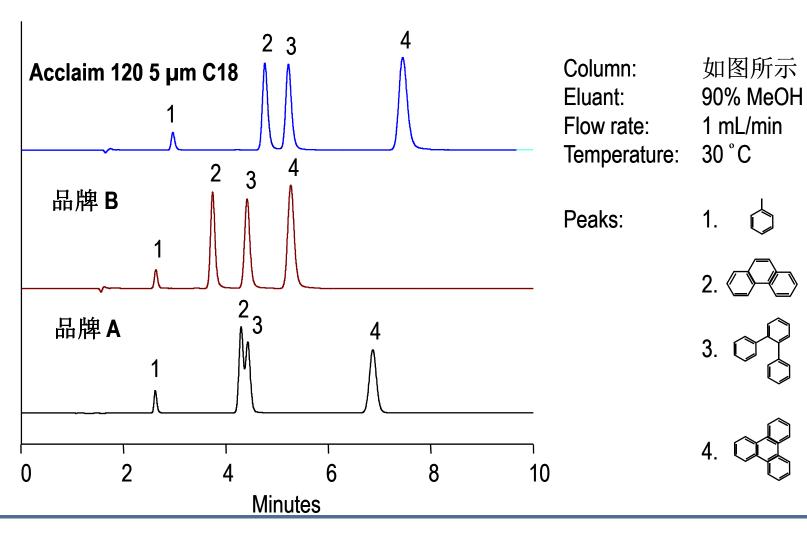
反相键合相色谱柱

· 以硅胶为基质,通过化学键合方式把碳十八、碳八、胺基等基团联在基质上作为固定相。这种固定相要占所有柱填料的70-80%

• 优点:


- 固定相稳定,不易流失
- 应用广泛,可使用多种溶剂
- 消除硅羟基的不良影响

• 缺点:


- pH值不能小于2或大于8
- 同样填料,各种牌号色谱柱不尽相同

不同类型色谱选择性差异

不同品牌C18区别

离子交换色谱柱

• 离子交换色谱

常见固定相类型

- → 弱阴离子交换:结合阴离子
- → 弱阳离子交换 结合阳离子

• • • • • •

流动相常为不同pH的缓冲盐

常用来分析离子型化合物

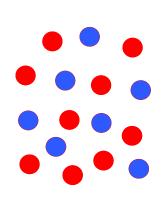
溶质必须为带电状态才能具有离子交换的能力


小分子分析面临的挑战

- RP 柱 (如C18) 用途最广泛,但:
 - 存在残余硅羟基作用,在中性淋洗液条件下,碱性化合物拖尾
 - 对高极性(亲水性)化合物保留很弱
 - 选择性有限
- RP柱+ 离子对试剂- 分离亲水性带电化合物
 - 平衡时间长
 - 流动相复杂 (MS 不兼容)
- IEX 柱-分离带电化合物
 - 疏水性差,限制了使用
- HILIC/NP柱-分离高度亲水的化合物
 - 疏水性差,限制了使用

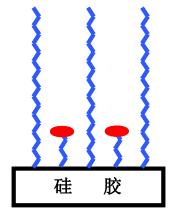
戴安 Acclaim 系列色谱柱及其研发历史

• 除了完善常规反相色谱柱外; 近年的主要的研发精力放在 了混合基质的色谱柱上

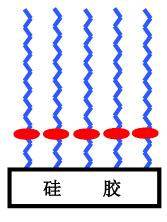


2000

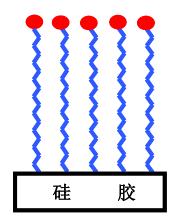
混合模式固定相


- 定义
 - 疏水性相互作用 + 离子交换作用
- 类型
 - WAX/RP, SAX/RP
 - WCX/RP, SCX/RP
 - 两性离子/RP, 两性/RP
- 优势
 - 选择性可调节
 - 流动相组成简单
 - 可同时分离不同类型的化合物

各种不同的混合基质制作方式


I. 混合填料

Hypersil Duet C18/SAX (Thermo Scientific)

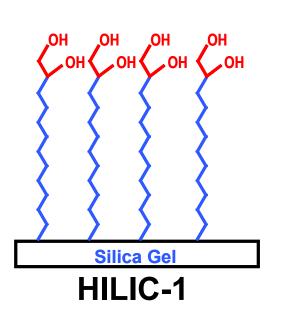

Ⅱ. 混合键合

Alltech Mixed-Mode (Grace)

Ⅲ. "内嵌"

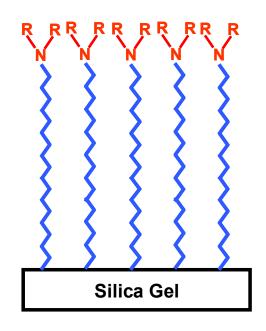
Primesep Mixed-Mode (SIELC)

Ⅳ. "封尾"


Acclaim Mixed-Mode (Dionex)

反相 - 蓝色; 离子交换 -红色

戴安特色混合基质色谱柱

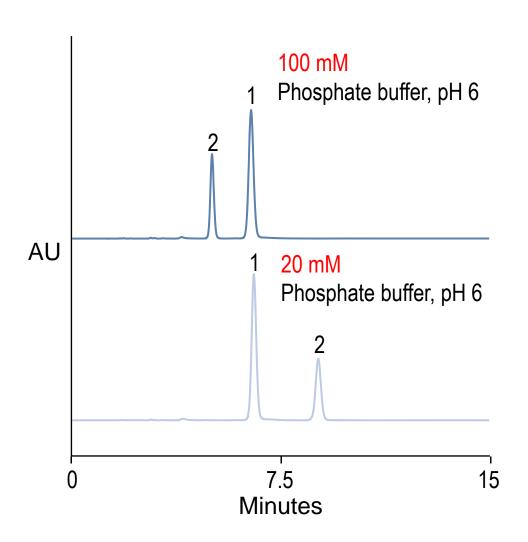

硅胶颗粒涂布 Nano-polymer 微球

孔内部: RP/WAX 外表面: SCX

Trinity P1

WAX/RP 混合模式色谱柱

硅胶: 高纯、多孔、球形


颗粒大小: 5 µm 表面积: 300 m²/g 孔径大小: 120 Å

特征:

- 选择性可调节
- 分离阴离子化合物具有理想 的选择性
- 选择性是RP柱的补充
- 多种模式分离机理: 反相、 阴离子交换、 阳离子排斥和HILIC

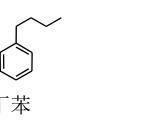
通过离子强度调节选择性

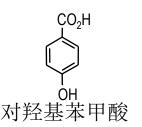
Column: Acclaim® Mixed-Mode WAX-1, 5 µm

Dimension: 150x4.6 mm

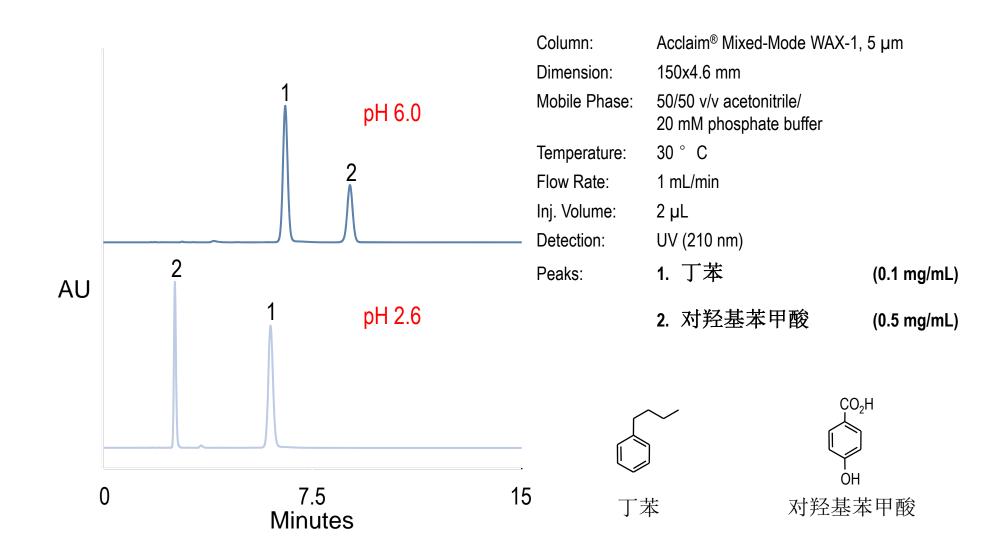
Mobile Phase: 50/50 v/v acetonitrile/phosphate buffer

Temperature: 30 $^{\circ}$ C

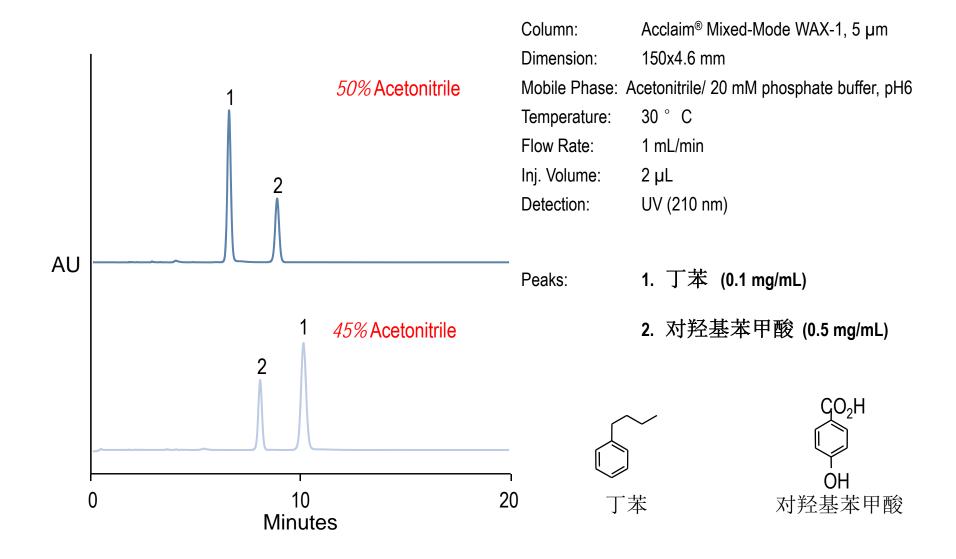

Flow Rate: 1 mL/min

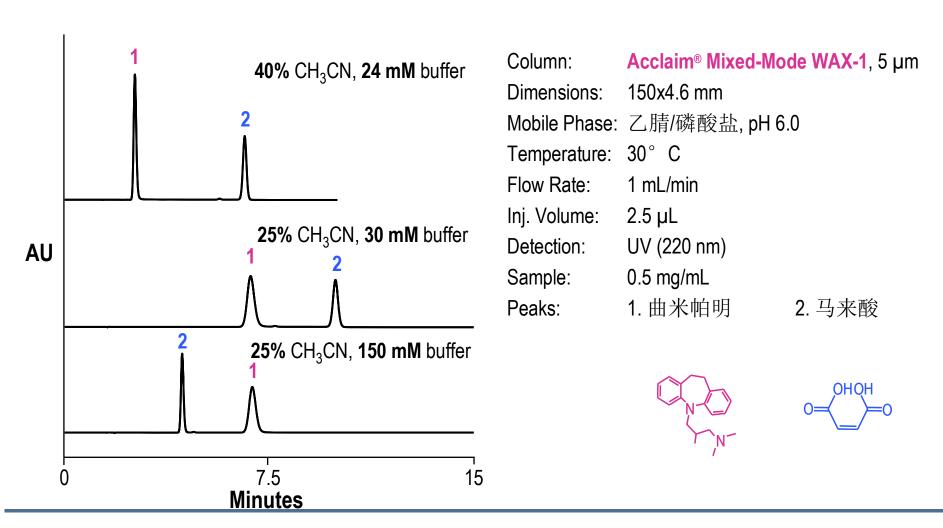

Inj. Volume: 2 μL

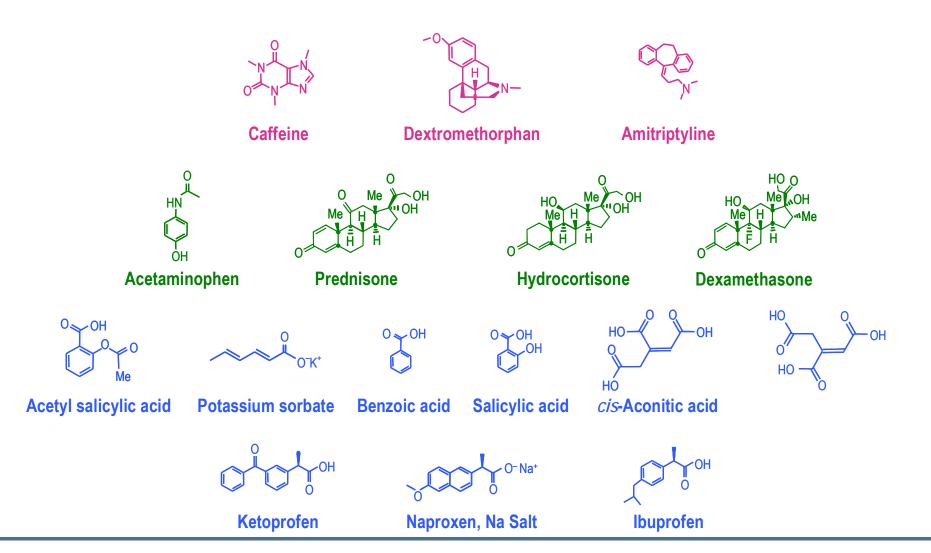
Detection: UV (210 nm)


Peaks: 1. 丁苯 (0.1 mg/mL)

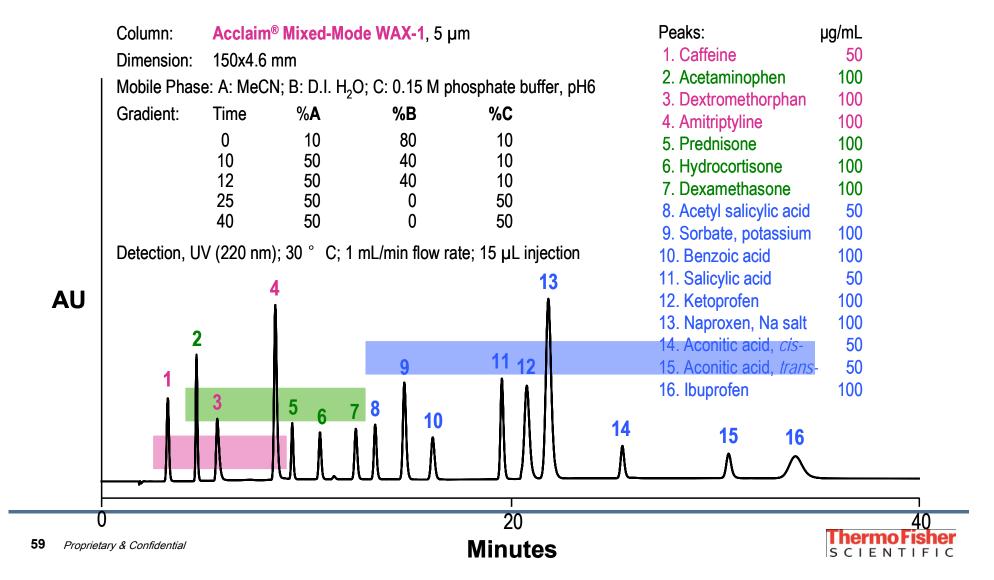
2. 对羟基苯甲酸 (0.5 mg/mL)



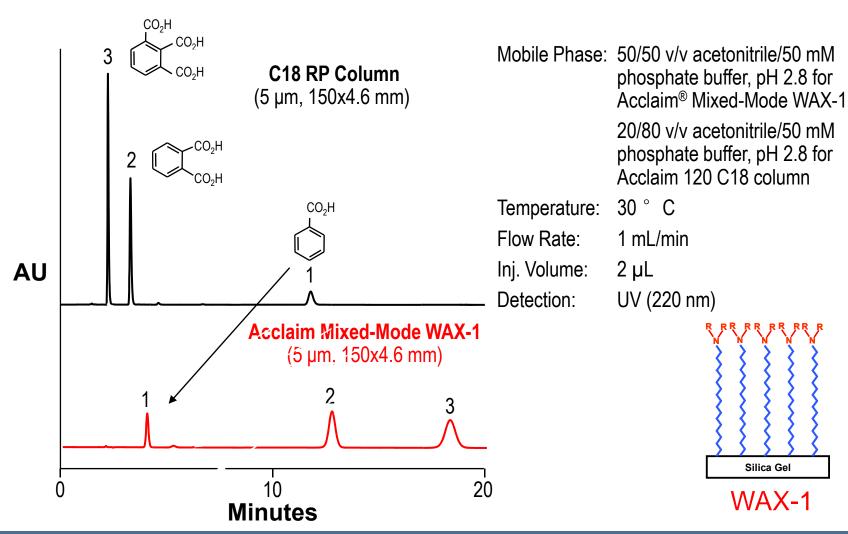

通过pH调节选择性

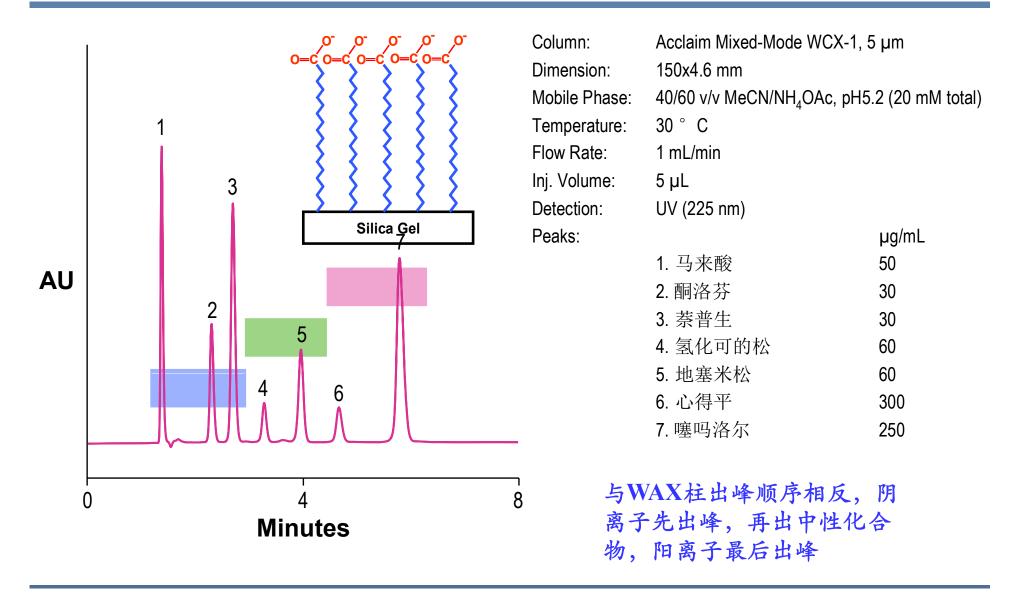

通过有机溶剂含量调节选择性

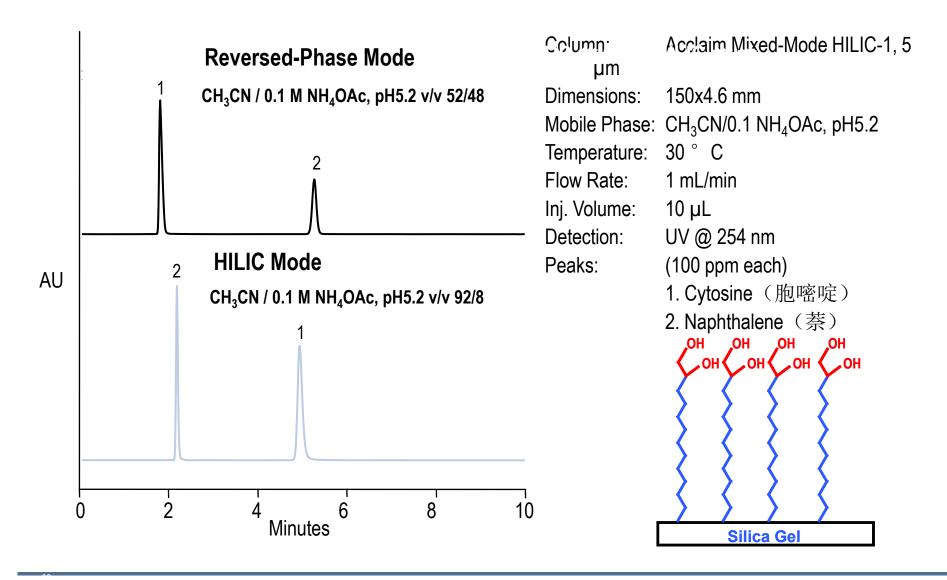
选择性可调节:同时测定碱性API药物及其对离子



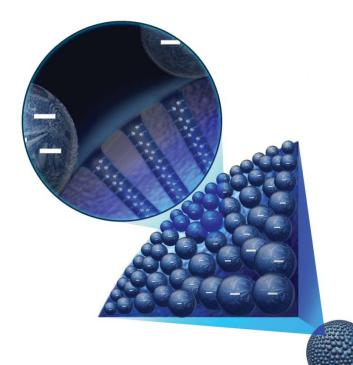
WAX-1同时分离碱性、中性和酸性化合物




WAX-1同时分离碱性、中性和酸性化合物


选择性与RP柱呈正交关系

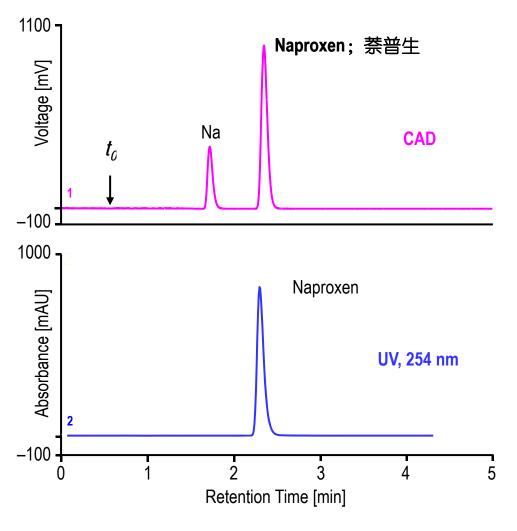
戴安WCX-1柱应用



戴安混合模式 HILIC-1柱的应用

Acclaim Trinity P1 — 色谱柱化学

- 高纯、球型、多孔硅胶结构
- Nano-polymer Silica Hybrid (NSH) 技术


● 硅胶颗粒涂布 Nano-polymer 微球

• 孔内部: RP/WAX

• 外表面: SCX

全新混合基质色谱柱 — Acclaim® Trinity P1

Column: Acclaim® Trinity P1, 3 µm

Dimensions: 3.0 x 50 mm

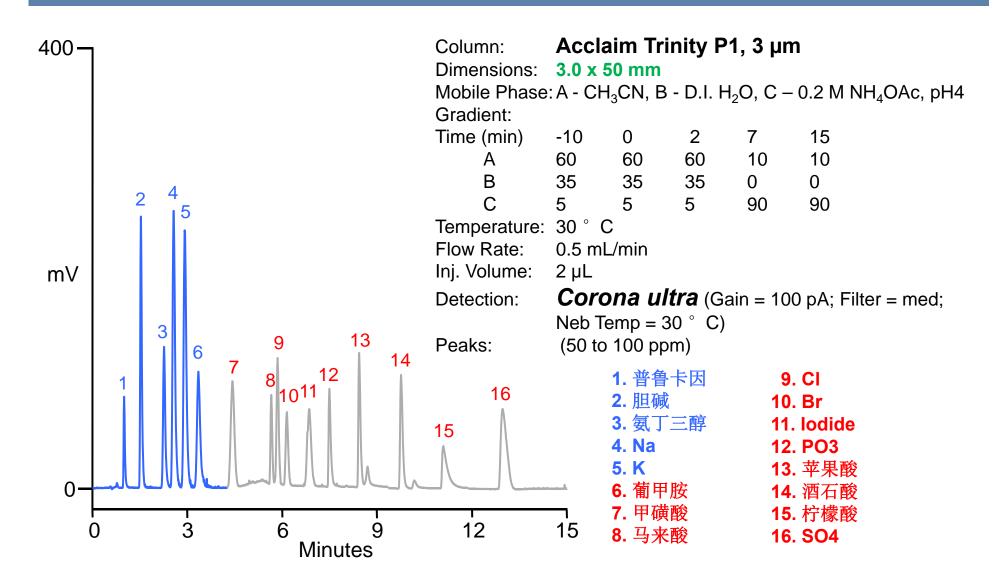
Mobile Phase: 75/25 v/v CH₃CN/30 mM (total)

NH₄OAc, pH 5.2

Temperature: 30 °C

Flow Rate: 0.5 mL/min

Inj. Volume: 2.5 µL


Detection: UV, 254 nm, and CAD detector

in series

Sample: Na, Naproxen (0.5 mg/mL

in mobile phase)

Acclaim Trinity P1 柱一16种药物反离子的同时分析

体积排阻色谱柱

• 体积排阻色谱

常见固定相类型

→ 凝胶过滤色谱(GFC): 亲水性固定相---聚乙烯醇、硅胶等

→ 凝胶渗透色谱(GPC): 疏水性固定相---聚苯乙烯-二乙烯基苯

化合物保留主要受色谱柱填料和尺寸影响

具有很好的预测效果,分子量大的化合物先出峰,分子量小的化合物后出峰

常用于测定高分子化合物的聚合度

常用于生物活性分子的分离

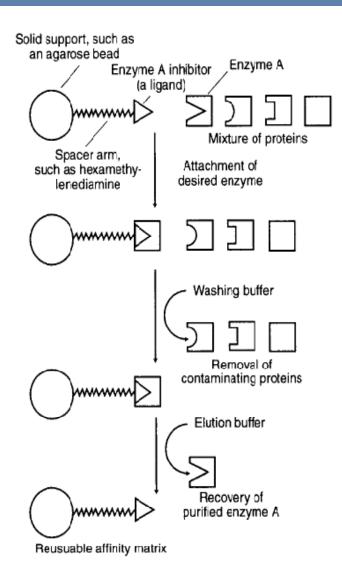
体积排阻色谱柱

• 体积排阻色谱

常见固定相类型

- → 凝胶过滤色谱(GFC): 亲水性固定相---聚乙烯醇、硅胶等
- → 凝胶渗透色谱(GPC): 疏水性固定相---聚苯乙烯-二乙烯基苯

化合物保留主要受色谱柱填料和尺寸影响 具有很好的预测效果,分子量大的化合物先出峰,分子量小的化合物后出峰 常用于测定高分子化合物的聚合度 常用于生物活性分子的分离

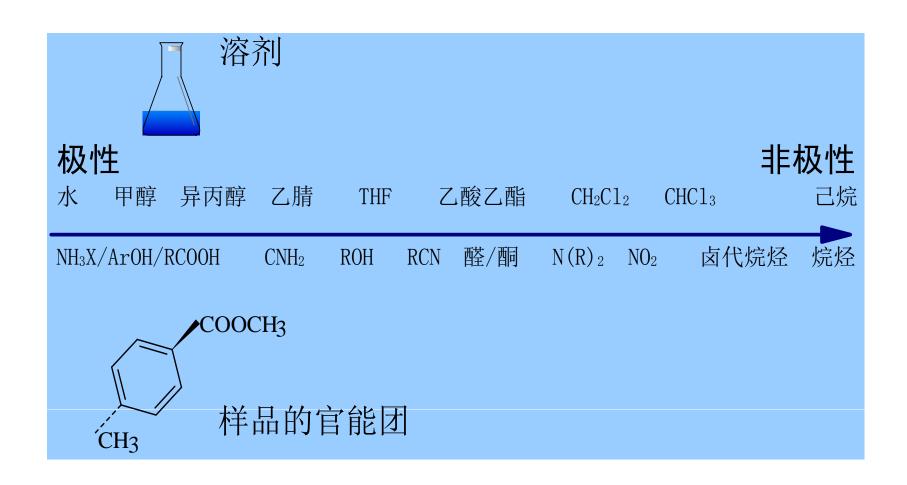

亲和色谱柱

• 亲和色谱

常见固定相类型如右图所示,通过 固体载体连接一个具有识别能力的 配体

"Lock and Key"(锁与匙)的识别机理,专一性很强

常用于生化样品的纯化、分离



三)反相色谱及常用流动相

- 反相色谱的主要类型,基于样品分子的极性分离
- 反相色谱的固定相(填料)为非极性,流动相为极性。用得最多约占70-80%
- 洗脱次序: 一般为反相,即极性高的先被洗脱

流动相极性

流动相洗脱强度

- 反相色谱最常用的流动相及其洗脱强度:
 - 水< 甲醇<乙腈< 乙醇<丙醇<异丙醇<四氢呋喃
 - 最常用的流动相组成"乙腈-水;甲醇-水"
- 正相色谱最常用的流动相及其洗脱强度:
 - 正己烷<乙醚<乙酸乙酯<异丙醇

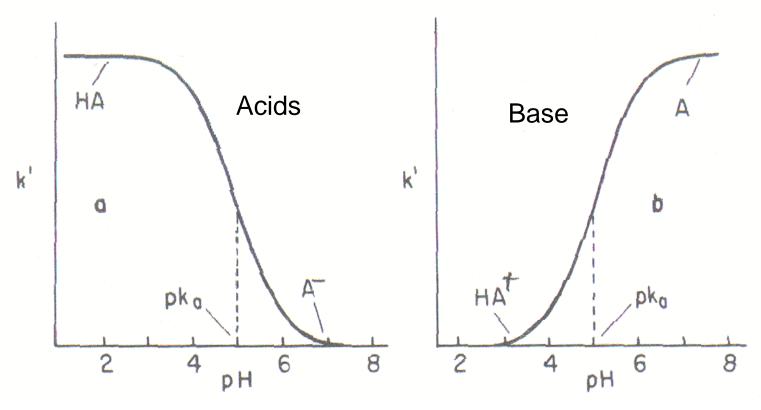
**应用添加剂,成为离子对、离子抑制方法

流动相的选择原则

- 样品易溶,且溶解度尽可能大
- 化学性质稳定,不损坏柱子
- 不妨碍检测器检测,所选波长处无吸收 *
- 黏度低,流动性好*
- 无毒或低毒,易于操作
- 易于从其中回收样品
- 易于制成高纯度,即色谱纯
- 废液易处理,不污染环境

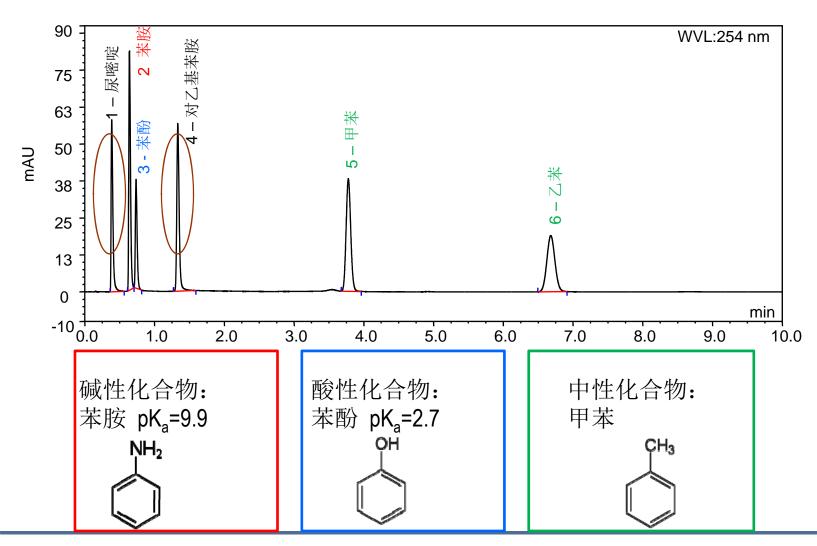
常用流动相

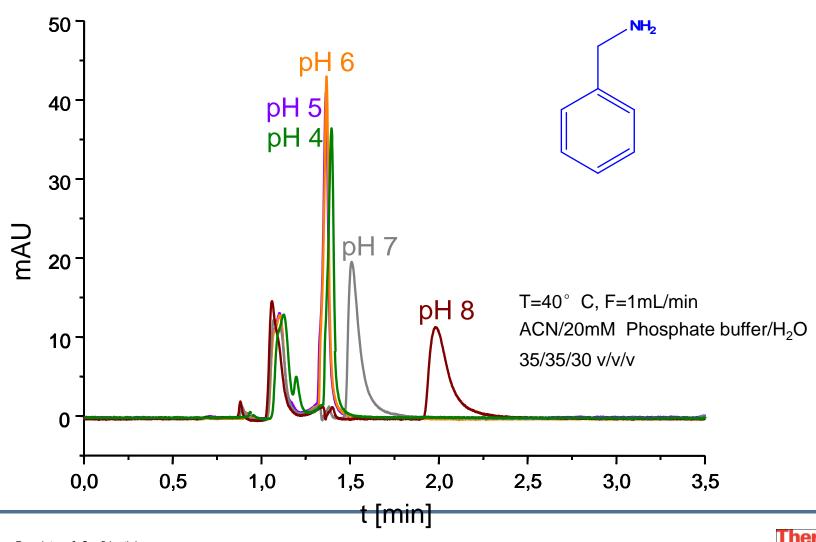
- 反相体系
 - 有机相: ACN、MeOH等
 - 水相: H2O、磷酸缓冲盐(pH2、7、12)、醋酸缓冲盐(pH4.5)、硼酸缓冲盐(pH9、13)、三羟甲基氨基甲烷(Tris, pH8)等
 - 改性剂:三氟乙酸(TFA)、三乙胺(TEA)等
- 正相体系
 - 正己烷、二氯甲烷、四氢呋喃、乙酸乙酯等
 - 乙醇、异丙醇等

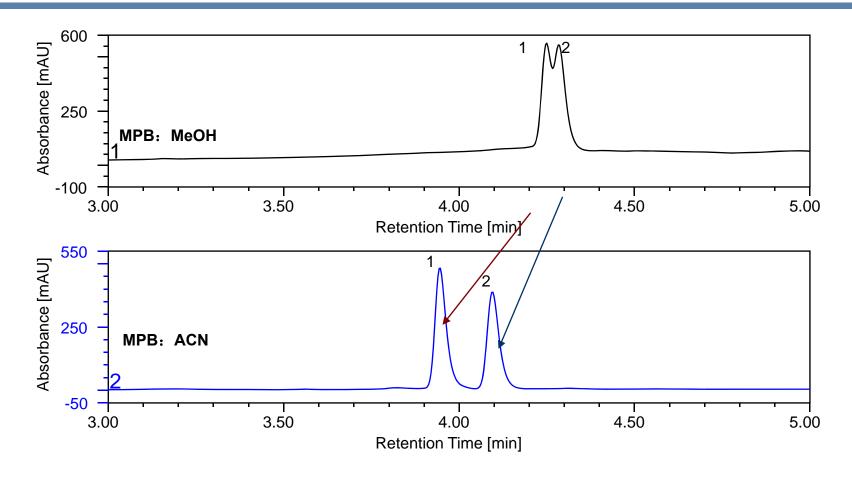


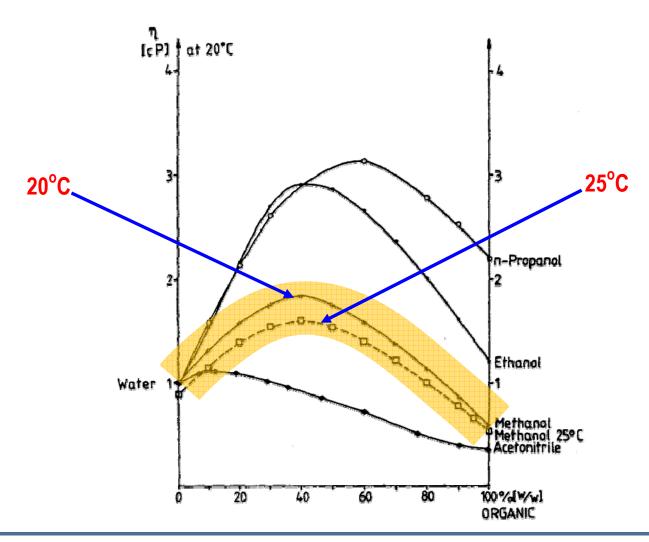
缓冲盐的选择

- 缓冲盐类型
 - 挥发性: TFA、醋酸盐、甲酸盐、TEA等
 - 非挥发性: 磷酸盐、硼酸盐等
- 离子强度
 - 弱极性化合物分离: 0~10 mM
 - 中、高极性化合物分离: 20~30 mM
 - 离子交换: 60~100 mM
- pH值


流动相pH对分析的影响

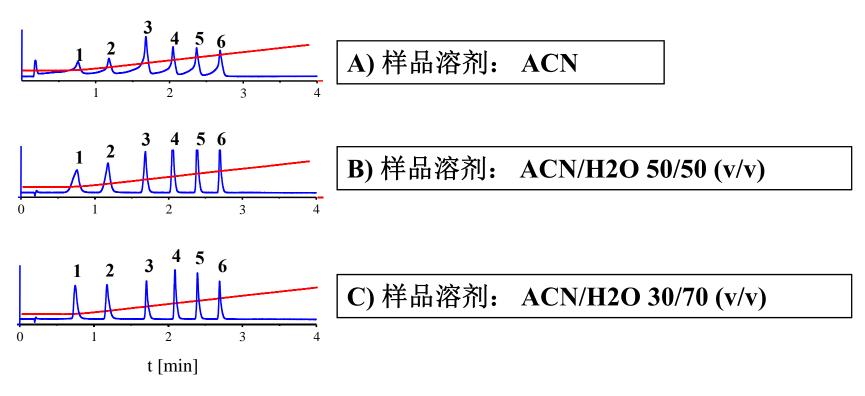

- ▶中性化合物的保留与pH无关
- ▶酸、碱性化合物的保留受pH影响
- ▶可通过调节pH确定未知化合物的酸、碱性


流动相pH对分析的影响

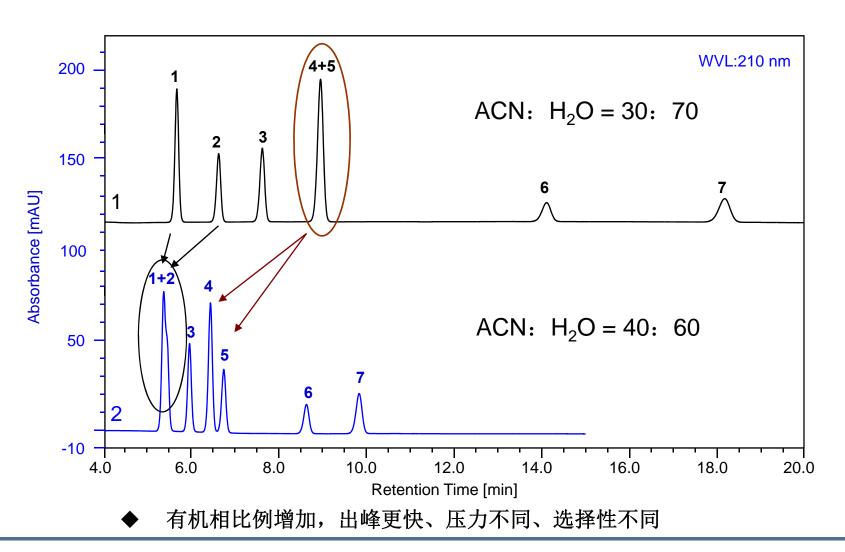

流动相pH对分析的影响

MeOH vs. ACN

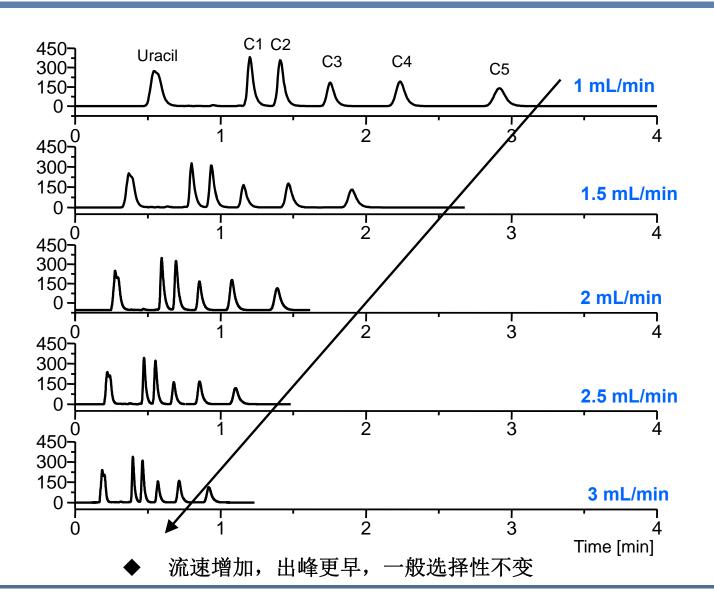
- ◆ 压力: MeOH-132bar; ACN-76bar; ACN洗脱能力更强; ACN选择性更好
- ◆ 峰1---邻苯二甲酸丁基苄酯(BBP); 峰2---邻苯二甲酸丁酯(DBP)



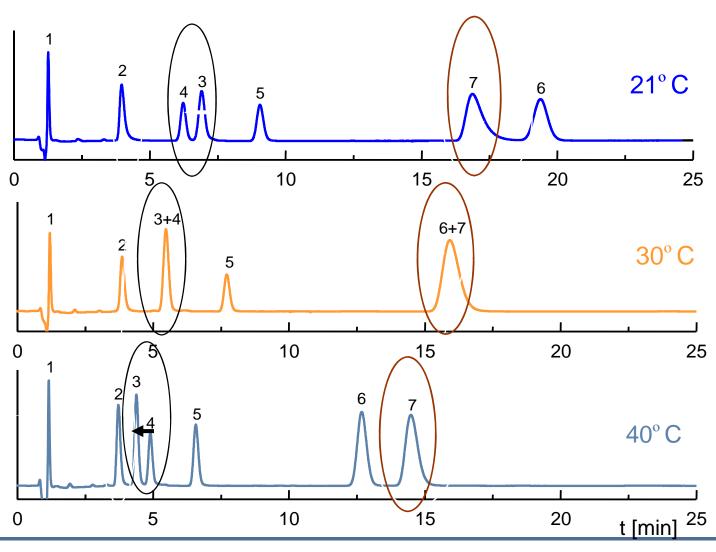
系统压力与流动相粘度直接有关

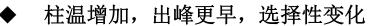

样品溶剂对分析的影响

• 样品溶剂洗脱能力须等于或小于流动相初始洗脱能力



◆样品溶剂洗脱能力须等于或小于流动相初始洗脱能力


流动相比例



流速对分析结果的影响

柱温对分析结果的影响

方法开发的具体步骤

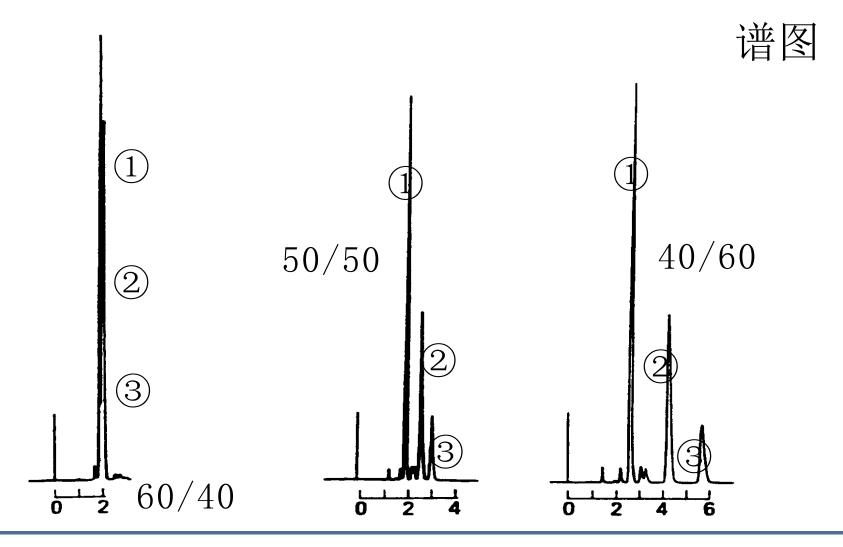
方法开发和优化的具体步骤

- 选定一根色谱柱(先用较短的柱子)
- 先用相对较高的流速
- 使用尽可能纯度高的标准品
- 先用高强度的洗脱液
- 调节k' 值改变保留值(普通反相-简单常用的方法)
- 调节a值改变选择性(方法优化)
 - 通过改变流动相的pH值,使样品成中性
 - •加入"对离子",使样品呈中性
 - 选择更合适的柱子
- 调节柱长度,流速,梯度,改变柱效及分离速度 (戴安有软件)

请记住:

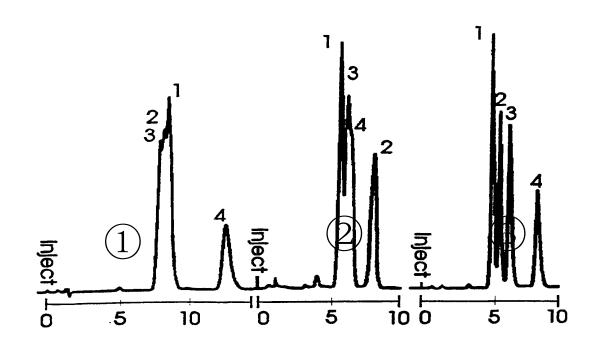
每次改变一个参数

液相色谱的方法开发(一) 一改变流动相比例及组成 (非极性和弱极性化合物)


改变流动相比例及组成(实例1)

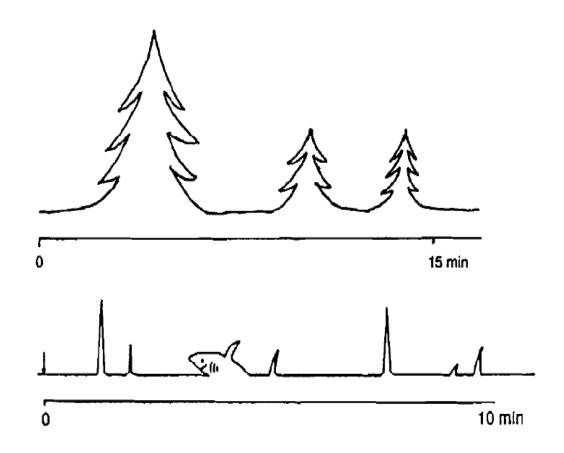
一非极性和弱极性化合物

- 色谱条件:
 - 流动相: 洗脱强度由强到弱,改变容量因子 K'
 - 1.有机相从100%开始逐渐降低
 - 2.走梯度
 - 举例中:
 - 乙腈/水,流速: **1ml/min**
 - 用不同的溶剂强度以 **60/40、50/50、40/60**,由强渐弱
 - 色谱柱: C18, 4.6mm×15mm
 - 样品:
 - ① 对羟基苯甲酸甲酯(Methyl Paraben)
 - ② 对羟基苯甲酸丙酯(Propyl Paraben)
 - ③ 对羟基苯甲酸丁酯(Butyl Paraben)


改变容量因子 K'

调节α值改变选择性

同样强度的不同有机溶剂,改变了流动相α值


- ① $THF / H_2O = 28:72$
- ② $MeOH/H_2O = 58:42$
- $3 CH_3CN/H_2O = 38:62$

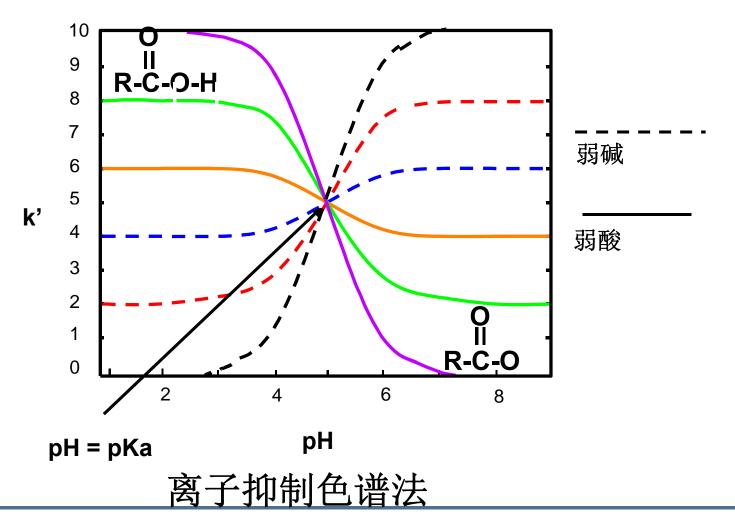
液相色谱的方法开发(二)方法优化一离子型化合物的色谱分离

方法优化

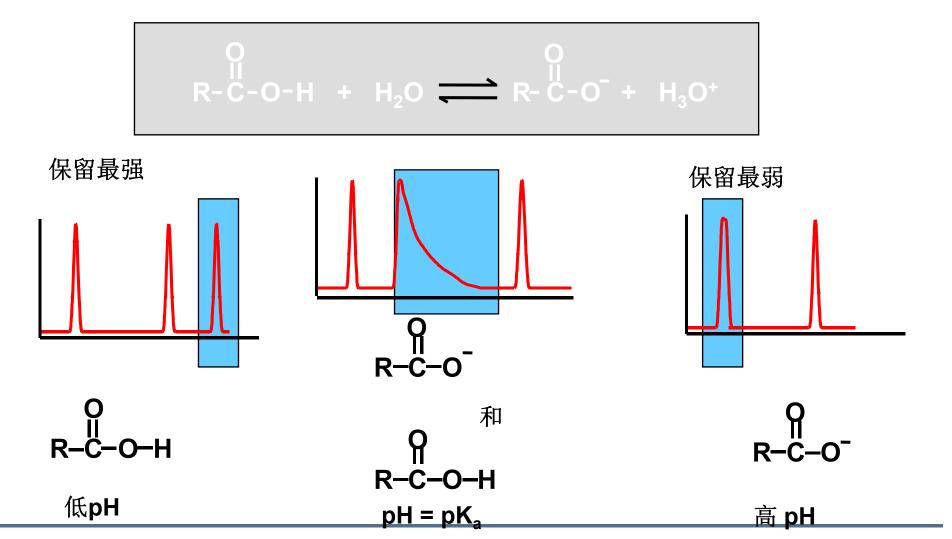
- 离子型化合物
 - 离子抑制法
 - 离子对色谱法
 - 离子交换色谱柱
- 色谱峰拖尾
 - 添加改性剂
 - 使用梯度

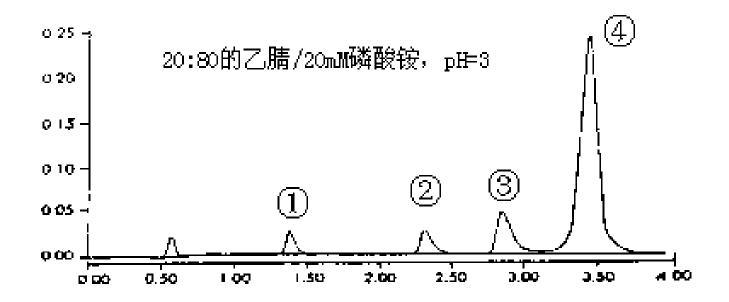
方法优化一离子型化合物的色谱分离

- 多数化合物是离子型的!
 - 使用反相柱
 - 离子抑制色谱法:通过改变流动相的pH值,使样品成中性
 - 离子对色谱法: 加入"对离子", 使样品呈中性
 - 使用离子交换柱: 离子交换法
 - 主要用于"强"阴、阳离子
 - 使用疏水和离子交换混合模式柱子
 - 主要用于"弱"阴、阳离子



方法优化一离子抑制色谱


- 离子型化合物在反相色谱柱上不保留
- 改变流动相的pH值,抑制样品离子的电离使样品成中性
- 适用于弱酸性化合物的分离
 - •加入TFA,磷酸盐等降低流动相的pH值,使样品降低离子化
 - 仍使用硅胶基质C18填料
- 使用条件应在填料基质的范围内
 - 硅胶柱的pH在2-8(较保险值3-7)内


方法优化 - 离子抑制

方法优化 - 离子抑制

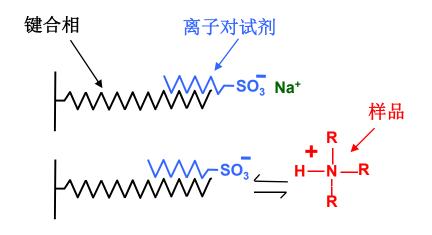
液相色谱的方法开发一离子抑制色谱(实例2)

•而在乙腈/水并且pH=7时, 多数组份保留时间很短,无 法完全分离。

三甲氧基-四羟基苯甲醛 苯甲酸纳 苯甲醛 对甲氧基苯甲酸

方法优化一离子抑制色谱的使用范围

- 下列情况下不能使用离子抑制方法:
 - 一些酸在pH低于2时还保持离子化
 - 一些碱在pH高于7时还保持离子化
- 可以有以下的选择
 - 使用"离子对色谱法"
 - 离子交换色谱柱
 - 甚至要采用离子色谱仪分析



方法优化一离子对色谱法

- 在反相色谱流动相内加入"离子对"试剂
 - 与样品中可电离的组份形成"对离子"
 - 在反相色谱柱上分离离子型化合物
- 离子对试剂的类型
 - 季铵盐、叔胺盐 (正离子),适用于弱酸
 - 烷基磺酸盐、高氯酸盐(负离子),适用于弱碱
 - 烷基长度不同,形成对离子的能力不同

方法优化 - 离子对

用烷基磺酸盐分离碱

三氟乙酸 (TFA)

七氟丁酸 (HFTBA)

己烷磺酸钠

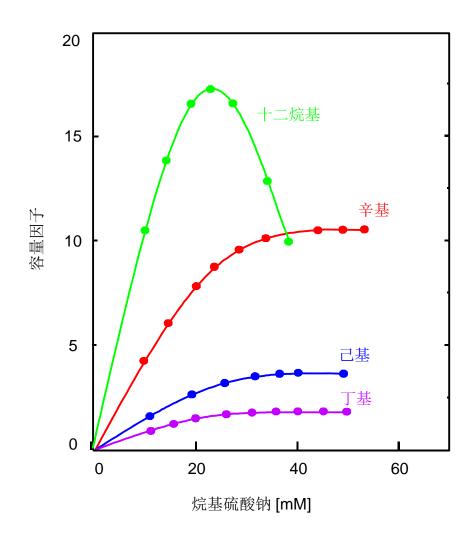
十二烷基硫酸钠

... ...

用季胺烷基三乙基胺分离酸

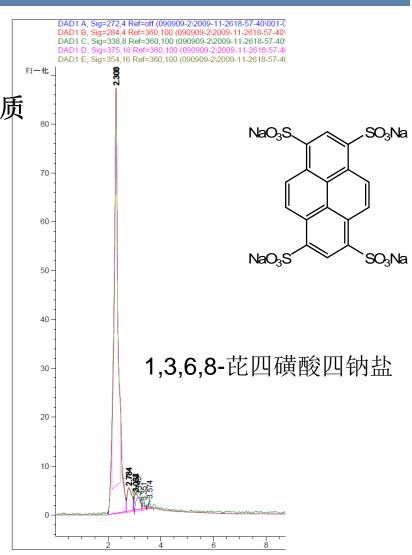
三乙胺 (TEA)

磷酸四甲基铵 (TMA)

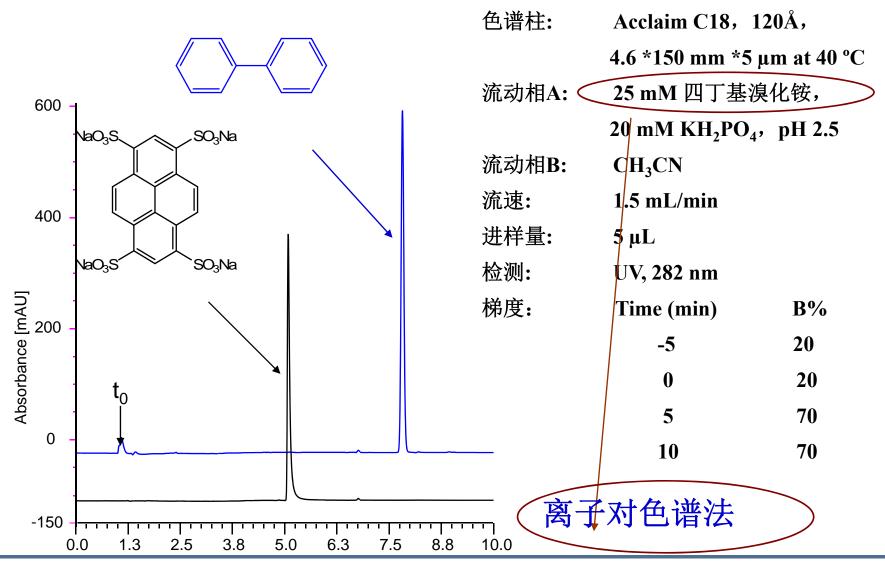

四丁基溴化铵

... ...

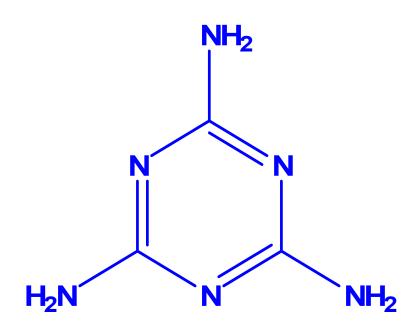
方法优化 — 离子对


• 优化参数

- 离子对试剂的种类
- 离子对试剂的浓度
- 流动相组成,包括pH、 有机相含量等


液相色谱的方法建立一离子对色谱(实例3)

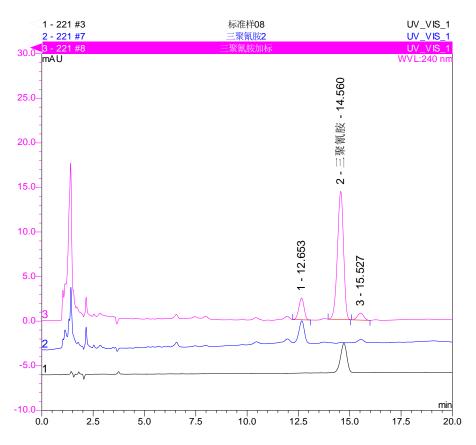
- 光敏物质一 1,3,6,8-芘四磺酸四钠盐
 - 长激发态寿命,与其他物质组成光敏物质
 - 未见相关色谱分析报道
- 离子型化合物
 - 在C18柱上无保留,如右图
- 色谱分析
 - 离子抑制法(不合适)
 - 阴离子交换法(不理想)
 - 离子对色谱法(好)


方法优化 - 离子对

Retention Time [min]

液相色谱方法建立一三聚氰胺分析离子对色谱(实例4)

- →C18柱上离子对色谱法(实例4)
- →SCX强阳离子交换色谱柱(实例5)
- →戴安疏水性作用 + 离子交换作用混合模式 WCX柱子(实例6)


三聚氰胺 —反相C18柱 离子对方法

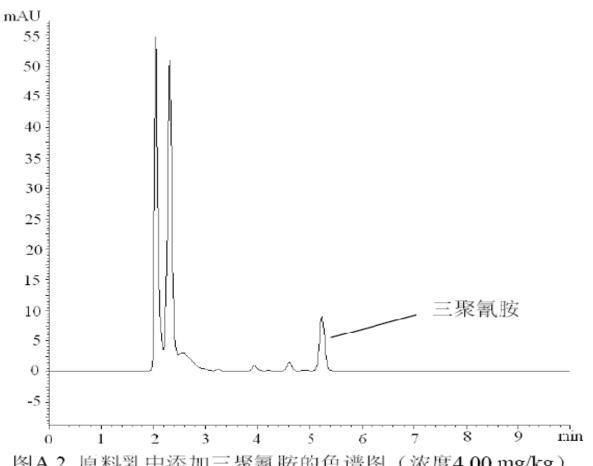
3.5.1 HPLC 参考条件

- a) 色谱柱: C₈柱, 250 mm×4.6 mm (i.d.), 5 μm, 或相当者; C₁₈柱, 250 mm×4.6 mm (i.d.), 5 μm, 或相当者。
- b) 流动相: C₈柱, 离子对试剂缓冲液(3.2.10)-乙腈(85+15, 体积比), 混匀。 C₁₈柱, 离子对试剂缓冲液(3.2.10)-乙腈(90+10, 体积比), 混匀。
- c) 流 速: 1.0 mL/min。
- d) 柱 温: 40℃。
- e) 波长: 240 nm。
- f) 进样量: 20 μL。
- 3.2.10 离子对试剂缓冲液:准确称取 2.10 g 柠檬酸和 2.16 g 辛烷磺酸钠,加入约 980 mL 水溶解,调节 pH 至 3.0 后,定容至 1L 备用。
 - ▶GB/T 22338-2008 原料乳和乳制品中三聚氰胺检测方法

三聚氰胺 —反相C18柱 离子对方法

图A.1 标准,液体奶样品及加标三聚氰胺奶样品的 HPLC色谱图。 三聚氰胺保留时间14.56min

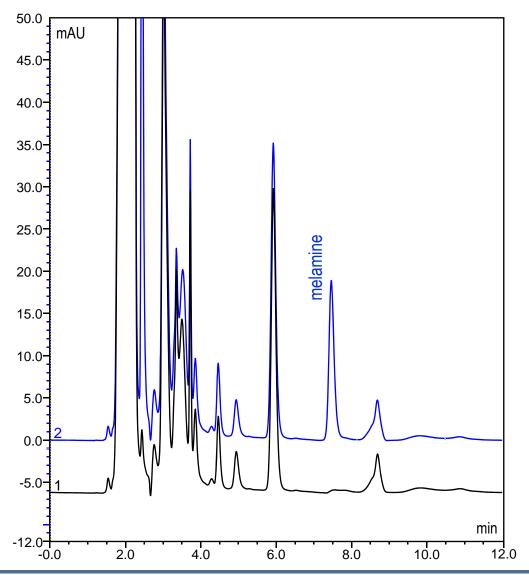
➤GB/T 22338-2008 原料乳和乳制品中三聚氰胺检测方法


液相色谱的方法建立一三聚氰胺分析 SCX强阳离子交换色谱柱一离子交换方法(实例5a)

6.2.1 色谱条件

- a) 色谱柱: 强阳离子交换色谱柱, SCX, 250 mm×4.6 mm (i.d.), 5 μm, 或性能相当者。
- 注: 宜在色谱柱前加保护柱(或预柱),以延长色谱柱使用寿命。
- b) 流动相:磷酸盐缓冲溶液(4.7)-乙腈(70+30,体积比),混匀。
- c) 流速: 1.5 mL/min。
- d) 柱温: 室温。
- e) 检测波长: 240 mm。
- f) 进样量: 20 μL。
- ➤ GB/T 22338-2008 原料乳中三聚氰胺快速检测 (液相色谱法)

三聚氰胺—SCX强阳离子交换色谱柱(实例5a)



图A.2 原料乳中添加三聚氰胺的色谱图(浓度4.00 mg/kg)

▶ GB/T 22338-2008 原料乳中三聚氰胺快速检测(液相色谱法)

液相色谱的方法建立一三聚氰胺分析 一戴安混合模式 WCX 柱子的应用(实例5b)

三聚氰胺的分析 - 空白及加标奶粉:

Guard column: Acclaim® Mixed-Mode WCX-1

5 μm, 4.3×10 mm

Anal. Column: Acclaim® Mixed-Mode WCX-1

5 μm, 4.6×250 mm

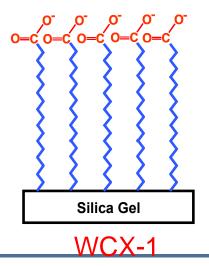
Eluents: NH4Ac buffer (10 mM, pH 4.3)

- CH3CN; (8:2, v/v)

Column Temp.: 30 °C

Flow Rate: 1.0 mL/min

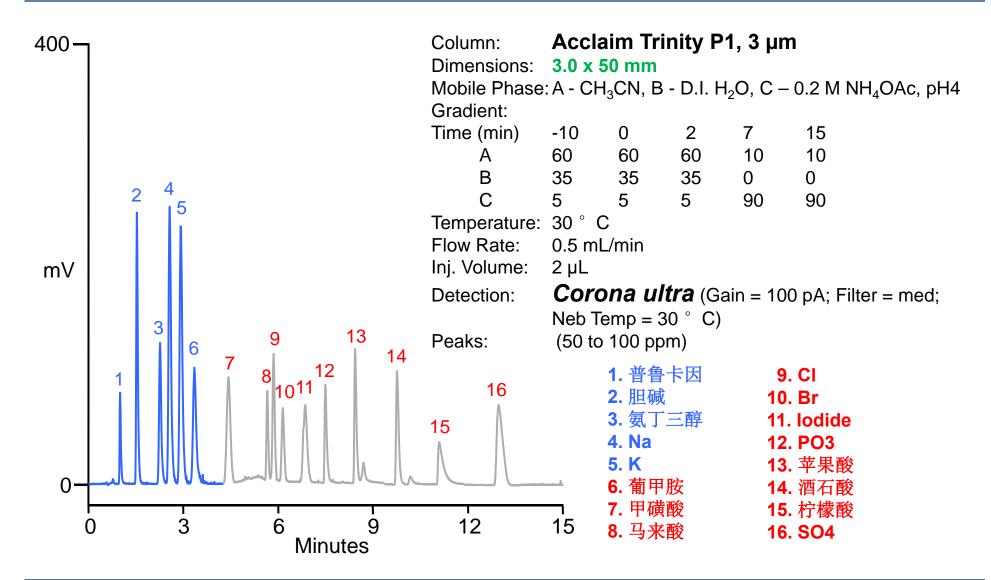
Injection Vol.:20 µL


Detection: UV on 240 nm

C-grams: 1- Milk powder sample # 6

2- Milk powder sample # 6 spiked

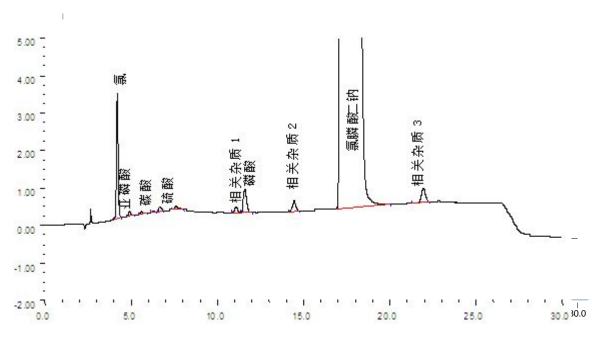
with 4µg/mL melamine standard


Peaks: Melamine

选择戴安Trinity P1 柱

16种药物反离子的同时分析(实例5c)

氯膦酸二钠(二部1034页)


分子式: CH₂C1₂Na₂O₆P₂

分子量: 288.86

无紫外吸收

极性比较强, 在反相柱弱保留

氯膦酸二钠及其制剂的有关物质分析-药典方法离子 色谱仪测定(实例6)

色谱条件: 戴安离子色谱仪

色谱柱:

IonPac AS 11-HC分析柱, 250*4mm

IonPac AG 11-HC保护柱,50*4mm

淋洗液:

KOH梯度淋洗 (0-20min, 20-50mM; 24-25min, 50-20mM; 25-30min, 20mM)

柱温: 30℃

流速: 1.2mL/min

检测器: 电导检测器

抑制器: ASRS 300 4mm

进样体积: 25µL

离子色谱——2010版中国药典新增项目

药品名称	检验项目	色谱柱
肝素钠	鉴别、有关物质	AS11
帕米磷酸二钠注射液	含量测定	AS22
注射用帕米磷酸二钠	含量测定	AS22
氯膦酸二钠	有关物质	AS11-HC
氯膦酸二钠注射液	含量测定	AS11-HC
氯膦酸二钠胶囊	含量测定	AS11-HC
盐酸头孢吡肟	N-甲基吡咯烷	CS12A

液相色谱的方法开发-实例

- 实例1.非极性和弱极性化合物分离一改变流动相的有机相组成及有机相和水的比例
- 实例2. <mark>弱酸性化合物的分离</mark>一离子抑制色谱(加入TFA,磷酸盐等降低流动相的pH值,使样品降低离子化)
- 实例3.较强酸性化合物的分离一离子对色谱(加入离子对试剂如四丁基溴化铵,使样品成中性)
- 实例4. 弱碱性化合物的分离一离子对色谱(加入离子对试剂如烷基磺酸钠, 使样品成中性)
- 实例5.酸碱性化合物的分离一选择不同类型色谱柱
 - a.SCX强阳离子交换色谱柱
 - b.戴安WAX-1,WCX-1混合柱
 - c.戴安Trinity P1 柱-16种药物反离子的同时分析
- 实例6.强酸碱性药物-药典方法采用离子色谱仪及离子交换柱分析测定

方法开发的其他因素

- 流速对柱效的影响
 - 不同内径的色谱柱有自己的最佳流速
- 样品的进样量(浓度)对柱效的影响
- 样品的进样体积对柱效的影响
- 溶剂粘度对柱效的影响
- 以上因素均影响分离度

色谱方法转换

- 如果没有与文献或要求相近的色谱柱
 - 转换进样量

进样量(Load)=
$$Load_{\overline{\eta}\underline{h}}$$
× $\frac{(D_{\overline{\eta}\underline{a}})^2 L_{\overline{\eta}\underline{a}}}{(D_{\overline{\eta}\underline{h}})^2 L_{\overline{\eta}\underline{h}}}$
D=内径, L=长度

• 转换流速

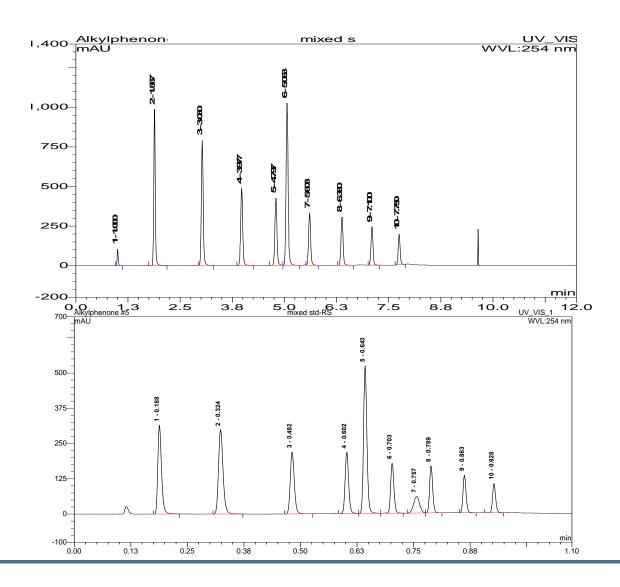
流速(F)
$$- F_{\overline{\partial}} \times \frac{(D_{\overline{\partial}})^2}{(D_{\overline{\partial}})^2}$$

D = 内径

典型的流速

柱子的内径(5um填料)	流速 (ml/min)
4.6	1-2
3.0	0.4-0.8
2.1	0.2-0.4
1.0	0.05-0.09

设置柱子流速时,要注意观察系统压力,一般 来说在满足分析的前提下使系统维持比较低的 压力对仪器是非常有好处的。

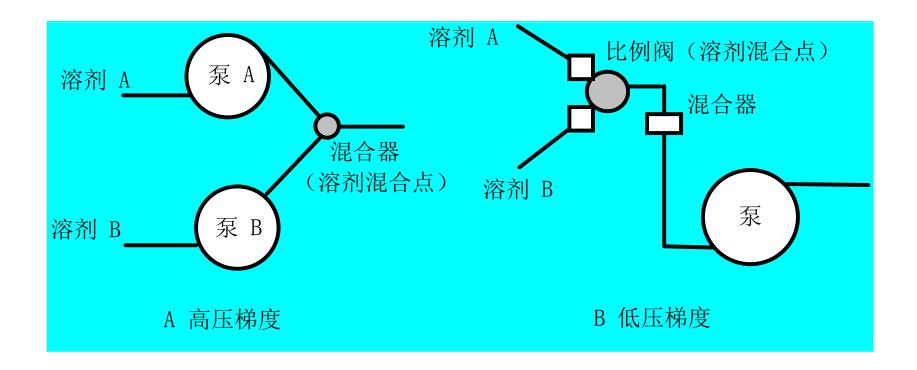

戴安优化方法小软件

- 调换一根柱子: 只要输入柱长度, 柱子内径流速, 填料的颗粒度
- 软件自动推荐仪器设置:包括流速,进样量,采样速率以及梯度设定
- 改变了柱效及分离速度,达到所要求的分离结果

分析方法快速转换

快速分离一短柱、微粒填料

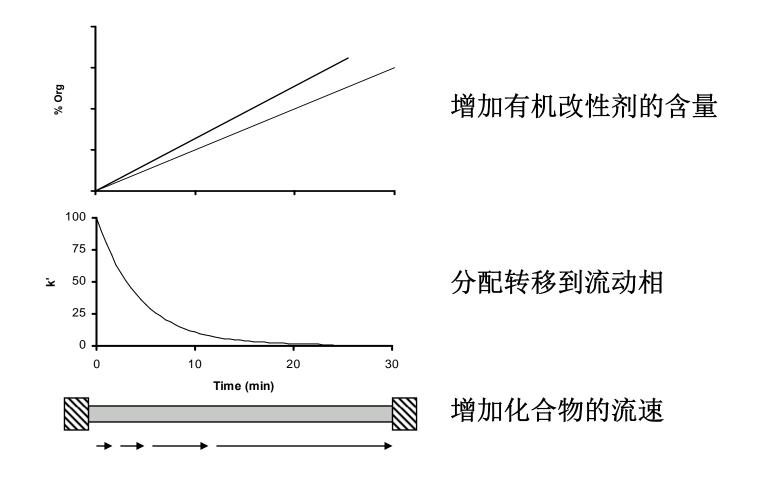
梯度洗脱方法介绍


液相色谱泵

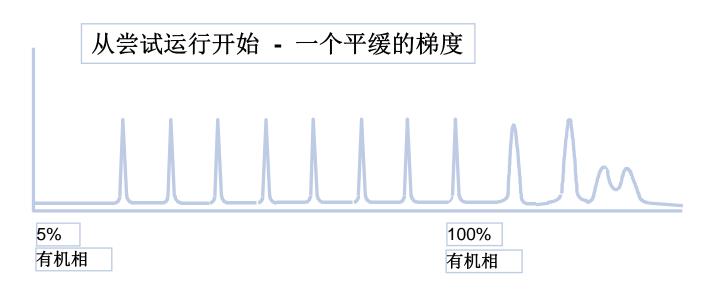
- 稳定平滑并且重现性好的流速
- 可靠且充分的溶剂混合
 - 准确及重现的自动溶剂混合
 - 准确及重现的梯度形成
- 有效的流速范围
 - 制备色谱或微柱、窄柱色谱要考虑
- 滞后体积
 - 梯度分析更为关注
- 目的: 在任何情况下保持最高精度

梯度的洗脱方式

• 高压梯度及低压梯度

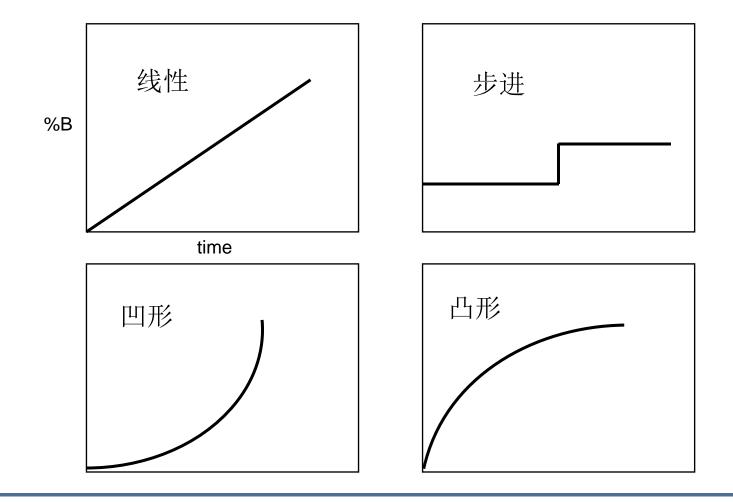


梯度洗脱的特点

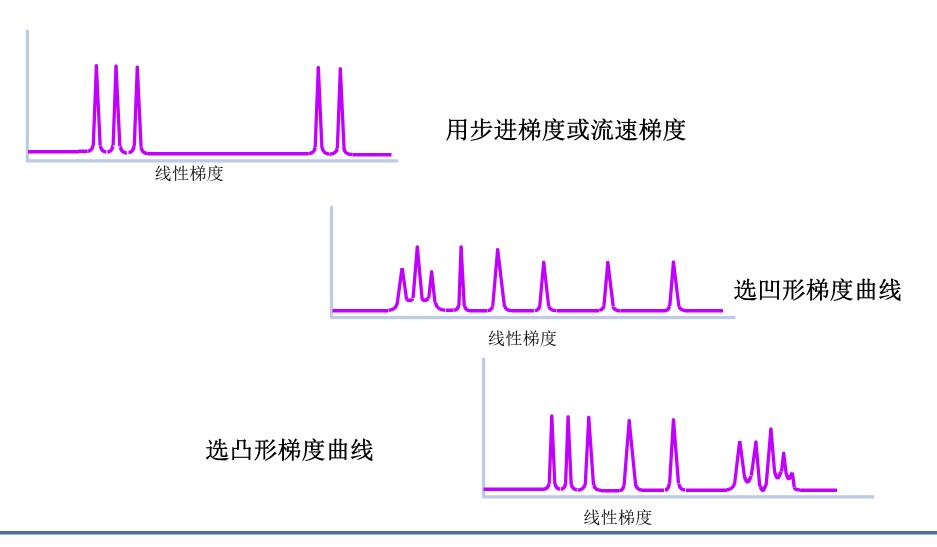

- 优点
 - 缩短分析时间
 - 增加分离能力
 - 检测灵敏度提高
- 缺点
 - 仪器设备要求二元以上泵
 - 不适合某些检测方式(RI)
 - 柱需再生平衡

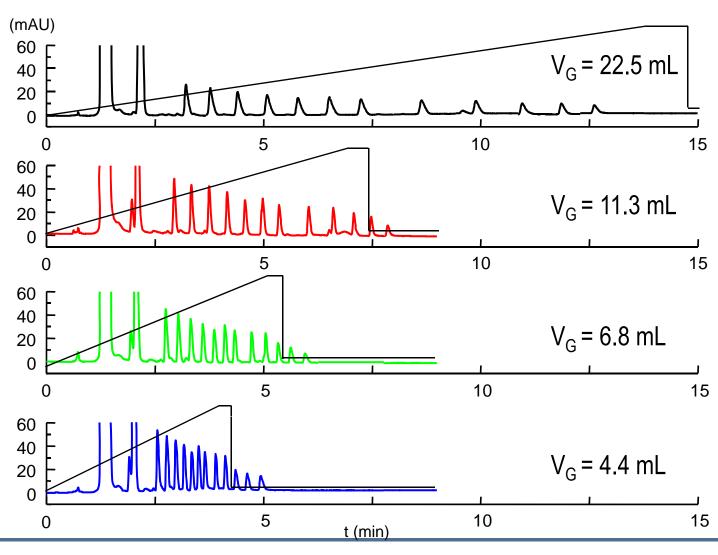
梯度运行中发生了什么?

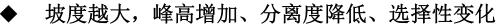
梯度方法开发-优化溶剂梯度

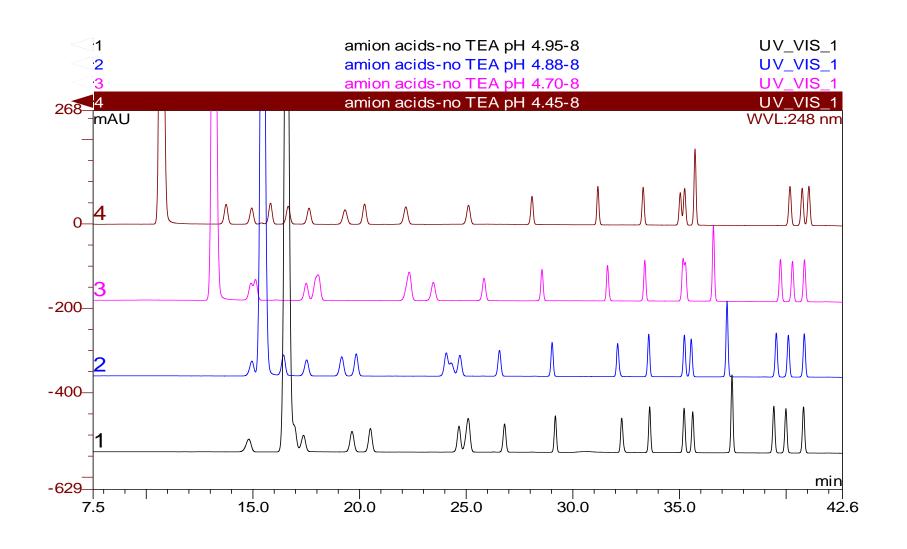

您必须确定:

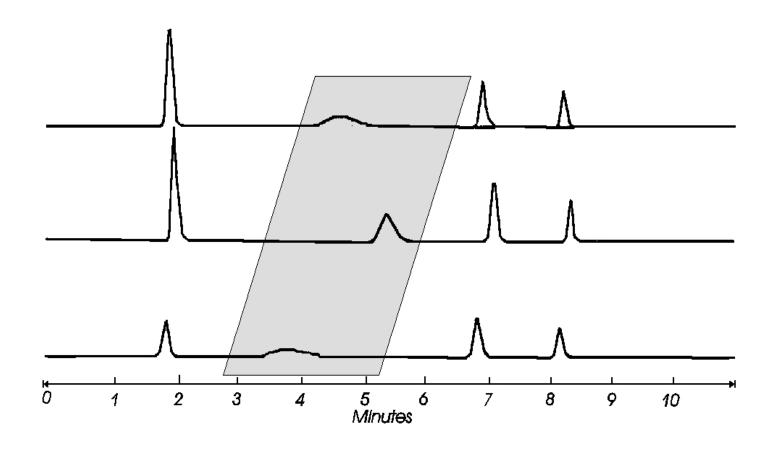
- 有机溶剂
- 初始组成
- 梯度时间
- 梯度陡度
- 梯度形状


- 流速
- 柱长
- 柱重新平衡时间

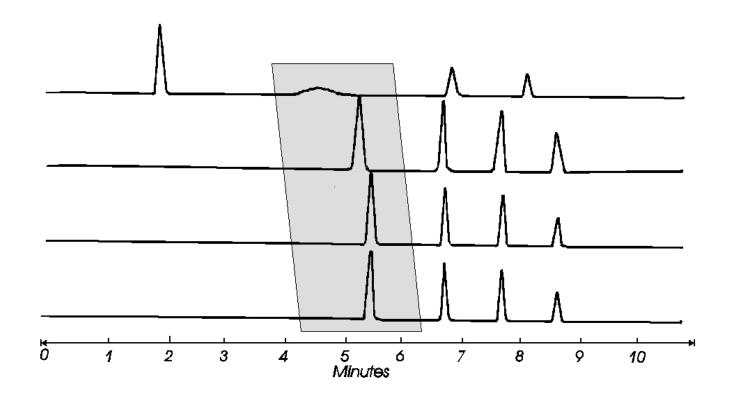

梯度形状




梯度坡度对分析的影响

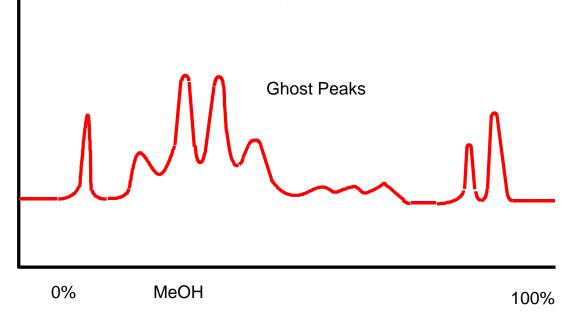


流动相缓冲液pH值从pH 4.95到pH 4.45递减时,氨基酸衍生物的保留和分离呈2种变化趋势


梯度平衡时间的影响(一)

10分钟的梯度,6分钟的平衡时间色谱图不重复

梯度平衡时间的影响(二)


平衡时间从6到7分钟,第一个峰的保留时间有明显的变化,说明6到7分钟的平衡时间不足,而8到9分钟变化不大因而大于这个时间时,平衡充足。

梯度洗脱的实际考虑

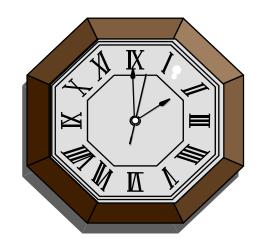
对于下列应用,梯度洗脱可能不适合:

- 使用强保留添加剂的应用
- 离子对色谱应用
- 在裸硅胶柱上的正相HPLC

Blank run producing ghost peaks due to impure water.

结论

- 充分用已知样品结构确定以哪种方法开始
 - 普通反相? 离子抑制? 离子对? 还是其他
- 观察流动相条件改变时色谱峰的移动
 - 根据变化的方向及大小决定下一步干什么
- 改变参数时要合理,每次只改动其中一个变量!
- 色谱柱的改变影响最大
- 梯度洗脱有利于复杂样品的分离



完善新开发的方法

- 日常使用的确认:
 - 流动相溶液稳定性实验
 - 定量校正一标准样品线性回归,方法线性范围
 - 重现性精密度实验RSD (n = 5)
 - 最小检出限一3 倍信噪比
 - 加标回收率
 - 多种类样品测定结果

非常感谢各位来宾!

我们的网址: www.thermoscientific.com/dionex

